
Context
Once we have learn the fundamentals of Pd and its syntax and methods with this tutorial

url > https://oneshaptiques.space/musIA/pdfs/musIA__PdTutorialFundamentals.pdf
its time to turn up for another level.

Pd is a very nice tool to build complex and customized sonic algorythms, but sometimes it can be difficult to build
large structures.

In this sense, i developed GNRTV.BLOCKS a kit of abstractions that works with Pd vanilla, and therefore with
the rest of Pd versions (Pd-Extended and Pd-l2ork, and Purr-data).

Remember that you can download and install pd versions in the following urls

https://puredata.info/downloads
https://puredata.info/downloads/pure-data

http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
https://github.com/pd-l2ork/pd

There are repositories of GNRTV.BLOCKS in the following urls >
https://oneshaptiques.space/musIA/

https://oneshaptiques.space/musIA/code/GNRTV.BLOCKS.v.1.0.zip

https://github.com/xamanza/

ENGLISH VERSION

https://oneshaptiques.space/musIA/
https://puredata.info/downloads/pure-data
https://puredata.info/downloads
https://github.com/pd-l2ork/pd
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
https://oneshaptiques.space/musIA/pdfs/musIA__PdTutorialFundamentals.pdf
https://github.com/xamanza/
https://oneshaptiques.space/musIA/code/GNRTV.BLOCKS.v.1.0.zip

GNRTV . BLOCKS is a toolkit library programmed with Pd visual programming environment useful to build
sonic generative applications in a straight-forward way. The idea inspired by the modular synth cosmos and other
modular tools features a big amount of different 'BLOCKS' that can be interconnected one from each other,
therefore a toolkit for building custom projects oriented for live perfromances and installations.

BLOCKS has a big large of elements constituted as abstractions that features different functionalities related to the
next domains :

Time [includes a master clock, a GMT clock, and several combinations of large cycles in time]

Data Flow [includes data flow splitters, gates, crossfades, pipes (delayed messages), and selectors]

Generativity [includes generative algoryhtms like gravity, blur, elastika, Random probability and Classification]

Patterns[includes a dual step trigger, a 16 step linear/randomic sequencer, an euclidian sequencer and also
pattern storages]

Sonifications[includes a module for sonify and store patterns in txt files easily]

Synths~[includes several synthesizers and in addition basic signal filtering elements like lowpass hipass
distorsion quantized delay and reverb]

Samplers [includes XL files samplers, a rhythm box of 3 samples and a slicer of a desired audio sample]

Mixers~ [includes a compact and basic mixer and a bigger one with more details in tweak values]

Signal Morphing~ [includes those elements related to envelopes (attack decay, sidechain, waveshaper) and also
other elements which features plasticity not only in envelopes but in signal expressivity such a granular filter or a
AutoRessonant filter

Meta·OSC [includes OSC communication with other applications such Processing or Wekinator which is a pretty
nice tool for MachineLearning Interaction Design]

Meta·ML [includes a prototyping approach of several Machine Learning methods like k-nearest neighbour
algorythm or Probabilistic sequencers]

Space [includes modules for binaural and quadraphonic purposes]

GNRTV . BLOCKS works 100% with pd-l2ork and pd-extended versions, and about 90% with pd-vanilla core
environments. Check your version for your system here >
pd-l2ork
pd-extended
pd-vanilla

Due to the fact that we are inside Pd environment, we have to consider the two classes of elements among the
environment : Those which manages data (according to the speed of your processor) and those which manages
audio signal (Therefore by default 44100 samples of information per second).
In Blocks we can see the difference with the elements that features a ~ which means that are blocks, elements or
abstracions that are managing or producing audio signal.

If you are not familiar with pd environment check out this tutorial which explains the fundamentals of the
language > url

As a brief approach any block has inlets or inputs in the top and outlets or outputs on the bottom. The basic
concept is that a block can have different amount of inlets according to the subelements included in the block
(sliders, radio buttons or numbers that we want to interconnect]. The order of inlets or inputs is from left to right
and from top to bottom.
Blocks has outlets or outputs that are depending on the functionality of each block. In the main menu bar you’ll
find the instructions of those connections in the dirctory code.HELP of the whole software package. In this
directory youll find the description of each block and its connections.

GNRTV.BLOCKS will work in several objects and blocks with normalized values (therefore between 0 and 1).
This is a project decision in order to increase the connectivity between elements and also, make this library much
more updated and compatible with ML external applications like Wekinator or others.

As it was presented before, GNRTV . BLOCKS is structured in several sublevels or groups of abstractions.
Let’s see in detail :

Time In this level we’ll find

[clØck] a main clock with bpm, and ms translation. Also has a a selector allowing quantizing time from a main
timeframework.
[void·XL·L·M·XS] is the block attached internally with clock in order to make different groups of triggers for
differenty instrumentsd we want to control. Notice that this block without clØck does not work.
[GMT Time] features Hours Minutes and seconds in real time, therefore is a nice block to use in installations to
control events according certain daytime
[secs mins h] similar to the previous ius usefull to sequence or trigg events in Large Time Spans.

Cycles
[32·64·128 cycles] creates loops of 32·64·128 distances depending on the incoming clock on the top left inlet
[48·96·144 cycles] creates loops of 48·96·144 distances depending on the incoming clock on the top left inlet
[128·256·512 cycles] creates loops of 128·256·512 distances depending on the incoming clock on the top left inlet
[144·288·432 cycles] creates loops of 144·288·432 distances depending on the incoming clock on the top left inlet
[256·1024·2048 cycles] creates loops of 256·1024·2048 distances depending on the incoming clock on the top left
inlet

In this level Ø we’ll find modules that will be useful to interconnect nodes and groups of nodes and maybe we Are
going to clone several times in our project.
Somehow like Gates or Switch Buses that Turns on or off a piece of code we want to control (both for dataflow
and for audio signal) > In this sense blocks which features a ~ symbol, are compatible to manage and
interconnect other signal blocks. Otherwise if blocks does not have ~ symbol, are directly data blocks which
manages numbers and alphanumeric messages.

 flow menú features difeferent blocks to manage data flow in ouir algoryhtm,ws

[splitter.x3] Splitter controls 3 different and independent outputs through a normalized slider (from 0 to 1 values).
Those output will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[splitter.x4] Splitter controls 4 different and independent outputs through a normalized slider (from 0 to 1 values).
Those output will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[splitter.x8] Splitter controls 8 different and independent outputs through a normalized slider (from 0 to 1 values).
Those output will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[patterns.x3] controls different combinations of 3 different patterns (can be superposed different outputs at once)
through a normalized slider (from 0 to 1 values).
Those outputs will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[patterns.x4] controls different combinations of 4 different patterns (can be superposed different outputs at once)
through a normalized slider (from 0 to 1 values).
Those outputs will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[patterns.x8] controls different combinations of 8 different patterns (can be superposed different outputs at once)
through a normalized slider (from 0 to 1 values).
Those outputs will be featured as a Toggle message (message 0 or 1 value) with it correspondent outlet.

[white gate] Let pass the data flow if the toggle is activated
[reverse gate] Inverts the Toogle or number from 0 to 1 value.
[3x gate] Let pass the data flow if the toggle is activated for each of the 3 independent channels. In addition a
normalized slider controls the sequence of tyhe patterns.

[1value·2channels·XCrossfade] A 2-channel crossfade between a normalized value (or bang)

[3bangs·2channels·XCrossfade] A 2-channel crossfade between 3 normalized values (or 3 bangs)

[threshold.min] fixes a minimun threshold of an incoming normalized value from 0 to 1

[threshold.max] fixes a maximum threshold of an incoming normalized value from 0 to 1

[attenuator] attenuates an incoming normalized value from 0 to 1

[xpander] expands an incoming normalized value from 0 to 1

[smooth] creates a smooth and slow dynamic response from an incoming normalized value from 0 to 1

gnrtv menú features different blocks that features generative algorythms.
Maybe one of the most uniques in those library that features as well the name of this project :)

[gravity] creates a string of randomic numbers according an initial speed and initial range. It behaves somehow
similar to attractors (lorenz etc).

[blur] creates a string of randomic numbers defined between a superior and inferior limits, and also related to a
certain speed.

[elastika] creates a string of values performing somehow as a ‘bouncing ball’ or elastic bouncing.

[RND.Probability] According to an incoming bang or trigger this block generates proportions or probabilities of
triggered randoms according certain thresholds defined by the sliders.

[classification] -According to an incoming normalized value (from 0 to 1), this block creates the output
classification, depending on the position and combination of the sliders.

patt menú features different blocks in order to build generative patterns. Also some block to store those patterns.

[colored ones] creates a dual pattern between the featured numbers. Those combination of numbers can be
selected through a normalized slider.

[x16] 16 step sequencer that can act in a linear way or randomically.

[pow²] creates a power of 2 sequence (with ranges like 2, 4, 8,16, 32 and 64) which triggs when it starts again.

[pow⁴] creates a power of 4 sequence (with ranges like 4, 16, 64, 256, 1024, 4096) which triggs when it starts
again.

[ran.lin] creates a linear sequence (lin position) or a random combination between the selected index through the
slider. When the linear sequence or the randomic string is value 0, it makes a trigger.

[euclidian] Euclidian sequencer of 3 different patterns.
Borrowed code from cgm.cs.mcgill.ca/~godfried/publications/banff.pdf

[trainer] stores a combination between 3 different patterns (rec) that after can be played again (read)

[random.kombi] creates a random combination of three different values which is stored in a memory that after we
can call it to creaate sequences.

Sonif menú features a couple of blocks to perform data sonifications

[sonification] block useful to read txt files and store its values in a memory that can be translated into
sequenmces, basslines or other sonification process.
[mouse] block that reads the mouse position into the screen. Useful to interconnect the mousemovement as a
Human interaction device within other blocks.

synth~

[drone.A] block that creates a polyphonic drone (with 8 voices) in which we can control the fundamental
frequency (freq.fonament) and the timbric components depending on the harmonics (tipus hradio). In addition
speed controls the velocity of the generative harmonics changes.

[drone.B] block that creates a polyphonic drone (with 8 voices) in which we can control the fundamental
frequency (freq.fonament) and the timbric components depending on the harmonics (tipus hradio). In addition
speed controls the velocity of the generative harmonics changes.
Is basically the same as Drone.A in order to make superposition of voices or harmonic combinations

[Bass.3x] Similarly to the previous, this block that creates a bassline with 3 voices in which we can control the
fundamental frequency (freq.fonament) and the timbric components depending on the harmonics (tipus hradio). In
addition speed controls the velocity of the generative harmonics changes.

[halftones] creates random combinations of the 5 halftones (black piano keys) of an octave (white hradio
selector). In addition we can change as well different octaves and bang different proportions of harmonics
therefore its different timbric result.[tmbr bang]

[chords] creates random combinations of chords (white hradio selector). In addition we can change as well
different octaves and bang different proportions of harmonics therefore its different timbric result. [tmbr bang]

[pentatonic] creates random combinations of pèntatonic tones (white hradio selector). In addition we can change
between different octaves and bang different proportions of harmonics therefore its different timbric result.[tmbr
bang]. Also the toggle [rnd] can change randomically between octaves

[oscillator] simple oscillator in which we can control its frequencies and range of them with [low-hi]

[osc~] simple oscillator in which we can control its frequency (for low and mid ranges) and attack decay envelope
integrated

[osc~ hi] simple oscillator in which we can control its frequency (for high ranges) and attack decay envelope
integrated

[oceans] white noise bank filtered with lowpasses that creates some wavy efffect

[particles] white noise bank clusters filtered with bandpasses that creates some glitchy and textures effect

[formant] block that creates a formant synth which emulates vocwels and pitches as a synthesized and plastic
voice

[lop~] low-pass filter

[hip~] hi-pass filter

[disto~] bit distorsion filter

[delay~] quantized delay rack

[reverb~] reverb rack

sampl ~

[file~] block that plays a sample in which we can edit the path. By defaukt samples of Generative.Blocks are
stored within the ‘snd’ directory. The toggle ∞ loops the sample.

[XLfile~ mono] block that plays a sample in which we can open the file through a prompt. The toggle ∞ loops the
sample. Useful for mono files.

[XLfile~ L+R] block that plays a sample in which we can open the file through a prompt. The toggle ∞ loops the
sample. Useful for stereo files.

[timestretch] block that stretches the incoming sound of a sample. Notice that this block works with any of the
previous otherwise will not work. It features selector of sample stretch 0 1/3 2/3 1, speed anmd stretch slider.

[sampler.3x.abc] rhythm box composed by 3 samples that can be triggered, self looped and controlled the volume

[sampler.3x.xyz] rhythm box composed by 3 samples that can be triggered, self looped and controlled the volume

[slicer] block that can create rhythms between sample slices. As options we can select different cue points for the
loops, volume, steps in the sequence (slides), and lenght of the slices

mixer menú features a final mixer that can be automatized and is featuring a LowPass filter, a Quantized delay a
Distorsion and a Reverb.

Morph

[attack / decay quantized values 1] block that creates an attack and decay time for any incoming signal.
Short values

[attack / decay quantized values 2] block that creates an attack and decay time for any incoming signal
mid/long values

[attack / decay powered values] block that creates an attack and decay time for any incoming signal
exponential behaviour values

[Granular synthesizer filter / processor] granular synth that can granulate an incoming signal or the microphone
line. Parameters : delaytime.grain , feedback.grain, grain.window, grain.pitch and volume.

[sidechain] sidechain envelope effect from an incoming signal. Time scales are related to thje m,ain clock in order
to make more precise rhythm effects. Parameters : quantity of time, volume and kut (envelope value in which
signal is descending)

[autoressonance] Autoressonance filter block conformed by a signal which is modulated thorugh a bandpass with
the envelope of a secondary signal. (notice that this secondary can be the initial and duplicated incoming signal)

[autotune] autotune algorythm block that creates some kind of basic autotune effect from an incoming signal.

[microphone] Microphone or linein signal that we can interconnect with other blocks.

[waveshaper] Waveshaper block with 5 different shapes

OSC

[OSC · SEND)))] block to send OSC messages both normalized (from 0 to 1 values) or triggers (bangs)

[OSC · RECEIVE (((] block to receive OSC messages both normalized (from 0 to 1 values) or triggers (bangs)

ML·knearest neighbour

[matrix.16] block inspired in ML projects like latent loops * or melody mixer**
It creates a 16-cell matrix we creates randomically patterns on the corners. Then an algorythm calculus based on
the k-nearest neighbour algorythm calculates the patterns in the in-between positions from the corners.
The result is a combination of patterns that later we can associate to a rhyhthm box for example and create easy
diunamic changes from similar but unique patterns.

*https://teampieshop.github.io/latent-loops/
**https://experiments.withgoogle.com/ai/melody-mixer/view/

ML·probability

[3x.SEQ.32] 32 step sequencer that works with probability numbers associated to patterns.
Some kind of stokastik or NaiveBayes ML algorythms of probability. Therefore we can create patterned and ‘rigid’
structures and also more organic ones.

[1.2.4.8.16 phrases] useful to create phrases associated with the previous sequencer

[patterns.store] stores the patterns created in the 3x.SEQ.32 in order to recall them later.

[RGB Color Selector] RGB sliders to change the colors theme

space

[quad] block to create a quadraphony from an incoming signal. We can associate the rotations to a certain clock
or even connect with generative algoryths blocks like ‘gravity’ to create more fluid transitions and movements. In
addition ‘fade’ slider controls the openness/contrast of the oscillation in the move.

[triad] block to create a triphony from an incoming signal. We can associate the rotations to a certain clock or
even connect with generative algoryths blocks like ‘gravity’ to create more fluid transitions and movements. In
addition ‘fade’ slider controls the openness/contrast of the oscillation in the move.

[binaural] block to create a binaural effect from an incoming signal. We can associate the rotations to a certain
clock or even connect with generative algoryths blocks like ‘gravity’ to create more fluid transitions and
movements. In addition ‘fade’ slider controls the openness/contrast of the oscillation in the move.
In this block the result of channel L is not necessary the reverse of the R.

[binaural.creator] block to create a binaural effect from an incoming signal. Similar to the previous one but
useful if we want to build a binaural sound from a mono incoming signal.
In this block the result of channel L is the reverse of the R.

