\\\ Y 1717
Cerii S 117

1. Pd.Tutorial Essentials
Tutorial by Xavi Manzanares

http://xavimanzanares.oneshaptiques.space
by-sa // 2021

http://xavimanzanares.oneshaptiques.space/

1. Pd.Tutorial Essentials

LICH requirements >
Pd Vanilla, in other words the original kernel of Pd without external libraries developed by the community

Downloads > https://puredata.info/downloads/pure-data

Note : In order to follow the next instructions, download this tutorial in .pd format
This pdf will be anyways useful to read whenever you don’t have your computer to practice.

0. Before Programming

Before programming is useful to know some basic issues in Pd environment.

As you may know, Pd is an open sourced graphic programming language which controls the DSP in a
dataflow of structures that you can build.

How this dataflow works?
Generally speaking, data flow works from top to bottom, and from Right to Left in the GUI.
So Programming elements may have inlets at the top of them and outlets at the bottom.

inlet inlet

Eet ro lEJEIE-I

outlet

Left inlet activates a particular function [object] in this
case 'metro’ that is a metronome or clock function

I metro 1EJEIEI=

O [

We can both init this function with [bang] or [toggle]
elements we find in Put Menu

[metro 1668 With [bang] once is started the object will be activated

until we close the patch or programming GUI surface

With [toggle] we can start and stop the function [object]
any moment we need

Binary Messages can be linked to a Toggle to activate it Z

Vel

Right inlet changes the argument (or value) described in the
function, in this case 1888

- q note that arguments or values does not have a specific
metro 1008 units, but it directly applies to a specific object.

for example if we find metro 1088, the argument it means
1686 milliseconds. If the object is osc~ 1080, the argument
means 1888 hertz

I=met ro 1EIEIEI=

outlet in the case of [metro] is a trigger which in Pd is
the element 'bang’

Ej bang

https://puredata.info/downloads/pure-data

Like other languages we can build structures with different methods and solutions.

In this example, there are different ways to activate the function metronome (object [metro]) :
Through messages [1[and [0 [

Through a Toggle that in fact is an On / Off switch

Through a bang or a trigger

v D Q
o0 V0 o o0
o © ~—~ g9}
v v» B a0 W
g a 50 5 d
(qv] 5
BEE B o = HSlider
i E =D :.: Too =:|
. & number

T =
metro 1660 ObJect

bang

O

On the other side, on the right inlet we are introducing a new value for a particular argument.

This can be a fixed value with message, or a dynamic value with HSlider or number

Remember that even could be a default written value in the object (like 1000 in this example), the last value
we are dynamically modificating in live (for example thorugh the associated Hslider or number), will be
defined as the lead and ‘definitive’ one.

There is another issue important to take it into account before programming :
In Pd we have data connections and signal connections.

Data connections sends numbers and alfanumeric messages, at the speed of your CPU can manage and
delay (latency) that has to be defined in your Pd preferences (depending on the OS can be found in the menu
Edit > preferences or in the menu Media > AudioSettings).

Signal connections sends / receive signals at 44100hz (so 44100 dots/samples every second) or whatever
samplerate you already set up in the preferences of Pd.

Data connections are thin ‘cables’

Signal connections are wide ‘cables’

Any object or message for Data connections is written without tilde ~
Any object or message for Signal connections is written with tilde ~

For example a multiplier of data is [* 2] and a multiplier of signal is [*~ 2

='au:lr:--
3 signal L signal R
I data
T *~ 0.6
data Isignal
h
eny-~
data
265.38

In preferences you can manage different audio devices like internal /external soundcards or even working
with several soundcards.

These GUI interfaces can change depending on the OS you’re using.

Pure Data Preferences

Audio API

[CUse multiple devices
Settings
Sample rate |44100 Block size 1024 ~
Audio Settings - O Delay (ms) |20
PR Devices
Sample rate: 44100 Delay (msec): 69 DeviEeane Channels
Block size: 1024 — | Input | 0SS device #1 2 ol
Input Devices Output | 0S5 device #1 - 2
1 HDA Intel PCH (hardware) |Channels: 2 e e
¥2: HDAIntel PCH (plug-in) |Channels:2
Output Devices
¥1: HDAIntel PCH (hardware) |Channels:2
¥2: HDAIntel PCH (plug-in) |Channels:2
-
Save All Settings |
| | J = | Help Close

In preferences also you can change samplerate or latency (Delay).
Latency (Delay) can produce errors for short values, depending on the size / calculus of your algorythms

and the power of your computer processor. So it’s a value that we can tweak in order to work DSP fine and
without glitches. But how we know it?

The first and basic test to check if pd is working fine is Test audio and Midi in the menu Media :

testtone.pd - /usr/share/puredata/doc/7.stuff/tools - @ 9-
File Edit Put Find Media Window Help

Welcome to Pd ("Pure Data"). You can use this window to test
audio and MIDI connections. To see Pd's DOCUMENTATION,
select "getting started” in the Help menu.

TEST TONES AUDIO INPUT (RMS dB)
80 noise input-hipass
60 tone L2 s a s s 18 We can select Test Tones button on
OFF itch ALL hai L]
P;z': SME :552;:: the lef.t side, and se.lect 80db
2 dB | 420 | o ———— If pd is working fine a sine tone of
I'a'x - 3 .
input-nonitor-gain[d) ;i, 440hz will be output in your
MIDI IN :1; soundsystem or headphones.
lnotein| 9-16
e . MIDI OUT 1118
ﬁ R [] 17-24
test 25-32
. L in wt

Pd is Free software under the BSD license. See LICENSE.txt
in the distribution for details.

When we create a new file with Ctrl+n it appears a blank GUI surface where you can build your

applications. This suface is called Patch like when we create a set of concrete connections in the Modular
Synths Cosmos.

Finally, remember that Pd is a dataflow Programming environment where we can build DSP applications, but
also manage and play with them as a performance/musician mode.

Maybe this is the command you’ll be using the most if you program with Pd > Ctrl+E

Ctrl+E will switch between these two modes :

> Edit / Programming Mode

You can move and writte whatever you want in the patch

> Performance / Musician Mode

You can just only move the sliders and dynamic elements of the Code as a performer

syntax

Even we can find several menus in the Pd shell or in any New patch from scratch (File / Edit / Put /
Windows / Media / Help), there is one menu that is related to the programming language elements, and
therefore the most important one, which is the menu Put.

In Put we’ll find different elements of programming :

We can find [Object] that makes a concrete function for
example [metro] wich runs a metronome.

Object Those functions are described by the name of the function
== and an argument or value that can be written in a fixed
(metEn position or dynamic values through the right inlet

> We can find Message that is an alfanumeric instruction
connected to an specific function or [object]

Message Message Message

Eang Et art 232

> We can find Numeric walues that are managed in different GUI
types, but essentially are the same :

=EI Numbe r

m Number2? This element allows receive or send messages and values from
other code sections. Making right button = properties =
messages > send-symbol or receive-symbol

VSlider > Vertical slider which defaultly goes from 8 to 127 This element allows receive or send messages and values Trom

other code sections. Making right button = properties =

We can write a new range of values for example from @ to 1 -
messages > send-symbol or receive-symbol

making right button = properties = output-range

J

|[Hslider = Exactly the same as Vslider but in Horizenta This element allows receive or send messages and values from
position other code sections. Making right button = properties =
messages > send-symbol or receive-symbol
WRadio = Vertical Radio Button which goes from B to the This element allows to receive or send messages and values
number of steps described in the element (in the default from other code sections. Making right button > properties =
example from @ to 7) messages > send-symbol or receive-symbol
M [T T T T T] Hradio > Exactly the same as VRadio but in Horizontal This element allows to receive or send messages and values
position from other code sections. Making right button > properties =

DIE_ messages > send-symbol or receive-symbol

VU is a vumeter which can visualize dB from incoming RMS

signal

=+12
+b

+2
-pdB
-6
-12
-28
-36
-58

Canvas is a GUI element which features design zonification

of the code.

Graph allows to manage different code sections as a
'backend' swithcing 'graph on parent' after making right

VU is an element not enough straight forward to monitor
amplitude wvalues. Instead of this, you can check it with
[env~] which features the envelope value

-c:sc- 43?

ET‘N\JI

I

En~

B <- the output is RMS amplitude which (for a sinuseid) is

button > properties of this element.

It will be useful to save space in the main GUI

Array is a memory of numeric values, very useful for
different algorythms we want to program.

This element will be explained later due to the fact of its

versality and strenght.

arrayl

about 3 dB below peak-to-peak amplitude.

This element allows to receive or send messages and values
from other code sections. Making right button > properties =
messages > send-symbol or receive-symbol

syntax

1.2. Pd Programming Dataflow

Idata.flow

PD Pure-data is a Datalow visual programming language
Flow is from up te bottom and from right to left

Is important te rearange different algorythms which can be
automatized in the flow

sends&receives

For example in this piece of code, any time we move HRadio Messages and values can be send and received anywere in a
button we need to 'refresh' the value of the red slider patch, building a rhizomatic structure with the only one
hierarchy that have been constructed.

s anyvalue

r anyvalue

if we want to automatize it, we can put the Red slider and
the Hradio associated with the [t b f] object

The rhizomatic structure of the data flow it has no
hierarchy, except the order that any code element has been
constructed.

[t b f] object describes 't' trigger 'b' bang and 'f' float

Therefore any time we move or the slider or the HRadio
button the operation will be directly updated

e+

Basic algorythms
.1. Pd Basic Algoryhtms

In the next examples we’ll see a bunch of tiny algorythms and sections of code which can be useful for many
developments.

Like other programming languages, one of the operations we are using to build structures in time are loops.
Even other programming languages this feature is essential for reading the whole code, in Pd we can make
several groups of loops that are running apart from each other. Therefore we can build several groups of
loops to make different operations at the same time.

Here there is an example of how to build a loop of 8 steps (from O to 7). In this case the steps are changing to
a fixed speed of 100ms, driven by the object metro.

Loops

il

=

metro 186

Hiz =4 Hw-
=l

ORE
— | &
— =9

i

mod & It counts B values (from @ to 7) every 10Bms

A counter builds a sequence of numbers until to a certain value.
If we want to make a count-up sequence we can use this piece of code:

count-Up D

el BZ It counts from @ te a thresheld in this case 32

On the contrary, if we want to make a count-down sequence we can use this piece of code:

start
count-Down B
Fo
B
i =N tempo
-
m?trg/{ﬁﬁ N,
Iﬁlﬁ’ \\ It counts from an specific threshold til zero
i, = N
1 G 1 \ H
T \ set §1
\ R
= f I|
T
e
\# 2
KE

i

Conditionals are the classic if, else etc. functions from another languages.

In Pd we can solve conditional dataflow with the object [sel] or [select] which solves both the if condition
and else condition.

The object [sel] works with a string of numbers or alfanumeric values, where each value has an specific
outlet, ordered from left to right.

Notice that in this example we have 2 arguments (40 and 10), but anyways we have 3 outlets in the object .
That’s exactly the reason that the first outlets corresponds to an if function, and the right side outlet works
like an else function.

Conditionals &5 Getes

sel 48 18

== bang if input DOES NOT match with any of the written
arguments, in this case 40 and 10

<= bang if input matches with the first argument in this
case 18

== bang if input matches with the first argument in this
case 48

There are other functions [objects] to manage conditional structures, for example :

[route] > distributor > similar to [sel] but a bit more complex and not so straight forward

[spigot] > gate / door > allow continuity or not from the incoming dataflow

[moses] > splitter > splits numeric values into two data lines from an specific argument ex. [moses 34]

Maybe one of the most exciting feature in Computer Science is the random function.
Of course is a very useful tool if you want to make generative instruments, but remember that even we
adore randomness, if we overuse this function, this could not solve our expectations in the sonic design.

Random

= =
random
=

metro 111=
Extracting a random value from @ to 127 every 111 ms

random 12?

One suggestion is to use random methods in a very defined set of options.

For example we can build a fixed 16 step sequencer in which the main kick can trig randomly a set of 4
random options for every loop :

1) It trigs normally

2) It Re-trigs dubbed

3) It trigs slightly in time with a groovy/slide effect

4) It does not trig

In other words, for this example using randomness in order to get more or less static/patterned structures and
organicity/changes at the same time.

Random - kbl
—- e
example a fixed 16 step sequencer in which the main kick -
ch 2187 can trig randomly a set of 4 random options for every loop r~ g3
s onofftiny @etro 111 :

timetiny &
? 1) It trigs normally dac~

2) It Re-trigs dubbed Receiving signals and send it to dac~
3) It trigs slightly in time with a groovy/slide effect
4) It does not trig

%[l;
1@«:1?
= !;IIIIJIIIIIII
L’i
elz

sel IZ
Volume 8-1
EZ triger when is not any of the arguments described tinyq3- -
randon 4 2eL2858101 —
b 9
sel 6132 3
r randvalue
It does not trig anything Z =
g 127
r onofftiny :0.118
min 0.3
timetiny f o Random value generated in the left section is converted as
metro 111 max 6.2 a generative envelope of g2
It trigs normally
random 128
1 oluse §-1
timetiny tinyq2- -
It Re-trigs dubbed R
5 randvalueZ 5~ g2
- 2
ipe

(45) stidetime from the original

It trigs slightly in time with a groovy/slide effect

= the object pipe makes a delay of a bang or value, in this

E)D@ 2000 case 2 seconds

_Eu tinykikk- -

5~ kbl

min and max are somekind like lo-pass and hi.pass of data

latal
)

X -

My (=5

Real Time Clock

Maybe we need to use a real time clock (seconds, minutes etc) for generative instruments we want to make
changes in time, for example an Installation in which we want to take it into account what time is it, or
changing parameters depending if we are on the morning, afternoon etc.

With a set of conditionals [sel] we already seen we can trigger some events for specific daytime.

RealTime.Seconds RealTime.Seconds

seconds

ine : Ramps and

Line is the object which makes transitions from two points.

It is useful to make several actions in the on going sound like fade ins/outs, portamentos, smooth binaural
effects, among another sliding effects.

In this example a group of lines are making different transitions recoursevely from an initial changing
parameter (random of 128 values every 1000ms). The ‘monitoring’ lilac-blue sliders are conceptually doing
the same but with different sliding effect in time. Therefore the slider at the bottom behaves much more

‘organic’ or physical-modelled. Those sliding values we can apply to other programming parameters, like
amplitudes, amounts of filters, etc.

Fades.And.TRansitions

metro 1008
=

&= =
random 127
T

~
-
V]
transition time in ms
l I |
fack T ‘F= M
ifZ=
— transition time in ms
— T |
ack f ? EZ@_____j

Basic algorythms

.2. Pd Packaging Algoryhtms

One thing that usually happens is that we are programming with a lot of pieces of code that easyly fills up the
GUI. One useful method to save space and code elements we are not playing as performers, is to hide pieces
of code in structures that only sends/receives the dynamic parameters we want to change.

For do that, we have several options:

Sub Patch
In this example we can see two pieces of code that are exactly the same.
Is it easy to see that the right solution saves a little bit of GUI space.

packaging.algoryhtms.with. sul

We can make a sub-Patch with the Object [pd whatever]

Is it a very useful feature whenewer the original algorythm
is big in the GUI

In this case we are using the subpatching method, with and object writting into : ‘pd’ and the name you like,
in the example [pd loop]. This creates a blank sub-patch, where we can paste the desired code and
connected to the main GUI through inlets and outlets.

The order of inlets and outlets that appears in [pd loop] at the main GUI, corresponds to the different inlets
and outlets we have written from left to right inside the subpatch.

packaging.algoryhtms.with. sul

Arxiu Editar Posar ftrobar Media Finestra Ajuda

inlet

E] E:I intet
i‘é —_— pd loop metro 188

T == W T TTTTT]
E'/F e

%j inlet
mod £/
W T ?f {?F

_ B
e nod 3

/

outlet

?

We can make a sub-Patch with the Object [pd whatever]

Is it a very useful feature whenever the original algorythm
is big in the GUI

Graph

Another method to pack sections of code is with ‘Graph’ function > menu put > graph

As the previous method, it creates a new patch where we can ‘make like a kind of hole’ in it, allowing us to
see the elements we want to manage.

packaging.algoryhtms.with.gr

E] [
metro ll?.ll.?d:l- D I |

m [[TTTTT]
o [[T [T]

T

Create Graph = menu Put = Graph

Right Button = open to edit and/or write the code

Similarly as the previous technique, the order of inlets and outlets appearing in the main GUI’s Graph
corresponds to the different inlets and outlets we have done from left to right inside the Graph

(subpatch) - /home/oh/Escriptori/p-dDevel... [x]

packaging.algoryhtms.with.gra . . R .
- - - - Arxiu Editar Posar ftrobar Media Finestra Ajuda

or———
Z4 mETEEEE

J—fﬁg‘_:;”f’
E:l E:| %t "

metro 108
i
1

k 1 W TTTTTT] outlet
ECI

mod &

W TTTTTT]

Ca) Create Graph = menu Put > Graph

Right Button = open to edit and/or write the code

Both methods (Subpatch & Graph) are similar, but maybe the second one helps to visually structure a main
GUI for big Patches.

Anyways the SubPatch technique allows us to make complexe groups of sections of code, that we can keep in
the ‘backend’ calling the functions or parameters we want to control, via sends and receives.

Sends [s whateverdata] [s~ whateversignal] and Receives [r whateverdata] [r~ whateversignal] are
somekind of ‘wireless’ connections, does not matter how deep you are (imagine you wanna send a message
from the main GUI, to a subpatch which is into another subpatch into other subpatch of the main GUI etc.)

Basic algorythms

.3. Pd Arrays (Buffers or Memories

Arrays [mentl put > arrays] are useful elements in Pd.
In fact are memory storages or buffers, where we can keep both data (numbers) and signal.
Let’s start with data storages and its transformations.

Array’s transformations are usually done by specific messages, with the next conceptual syntax :

[; arrayname transformation value [

Arrays > Constant

We can use arrays to store constant values in time.
Even is not so often used, this is the syntax :
[; arrayname const value [

arrayl
8 =-- fixes a constant value
I = T_:Innstant value
i 100 -
arrayl const $1
arrayl
a7 <-- fixes a constant value
I = =clc:unstant value
f 100 -

@arrayl const $1

Notice that value after const is written with a $1.
This means that can be a variable, therefore a numeric value which dinamically can be changed.

Arrays > Resize

We can resize arrays in time.
This is the syntax :
[; arrayname resize value [

1

array?

34

|jarray? resize §1

resize

—_— [resize array or memory

N
N
I

array? resize %1

resize

Arrays > Trigonometry functions

We can make data buffers with trigonometric structures, like sines and cosines

These are examples of the syntax :
[; arrayname sinesum arraysize string.of.values [

array?z

[resize array or memory

[; arrayname cosinesum arraysize string.of.values [

The array size has to be power of 2 > 32, 64, 128, 256, etc
The string of values you can try with different combinations between 0 and 1 > 0, 0.1, 0.3,0.2, 0.1, 0.4, etc..
The more large is the string, the more curvatures has the generated wave.

For instance if we want to make a basic sinewave

[; array3 sinesum 64 1 [

Aarray3 sinesum 64 1

array3

Lrigonometric shapes

These functions are useful in filtering sigmal like
WaveShaping technigues

Now a sinewave a bit more ‘woobly’ :
Remind that the more large is the string of values, the more curvatures has the generated wave.

a[f"r\hﬁ

array3 sinesum 64 8.2 8.5 8.6 8.2 Lrigonometric shapes

These functions are useful in filtering signal like
WaveShaping technigues

THE MORE LONG IS THIS STRING OF VALUES
(FETYWEEN 0 AND 1), THE MORE WOOBLY IS THE WRVE

afrhy3

array3 sinesun|64[0.2 0.5 0.6 0.2 Lrigonometric shapes

These functions are useful in filtering signal like
WaveShaping techniques

vy

64 VOLUES IN X

With cosines is similar
[; arrayname cosinesum arraysize string.of.values [

artay3 /

Lrigonometric shapes

These functions are useful in filtering signal like
WaveShaping techniques

array3 cosinesum 64 8.4 1

Arrays > Normalize

Depending on which use we want for the buffer, maybe we need to limit the ranges.
Working with sines and cosines the values on the Y axis goes from -1 til 1, but sometimes shapes can
overpass these thresholds.

There is another instruction with arrays that limits this ranges, which is ‘normalize’
[; arrayname normalize value [

If we write normalize 1, shape will be fitted in -1 / 1 ranges.

= =
Arigonometric shapes Arigonometric shapes

These functions are useful in filtering signal like

These functions are useful in filtering signal like
WaveShaping techniques

WaveShaping technigques

array3l cosinesum 64 8.4 1 8.1 6.2 6.3 array3]l cosinesum 64 6.4 1 6.1 6.2 6.3

array3l normalize 6.99

Trigonometric shapes are very useful if we want to make WaveShaper Filters, for example this one.

-osr_-- 6El=
- waygshape
+~ 1
*~ 512 ’
tabreadd~ waveshap? i
[[l‘\-—-"'"\‘_ :

waveshape sinesum 1824 1 6.2 6.3 0.1

dac~

Anyways, due to the fact that it’s a nice and expressive technique of signal filtering, we’ll see different
methods and tricks of it later.

Arrays > .tx
Reading and Writing TXT files

A very interesting feature with Arrays is to ‘import’ or grab the contents of a text file.

In fact this is an interesting feature for sonification projects.

In this sense, in order to Data be imported correctly by Arrays, text files has to be formated with a value per
line of code.

Values has to be ALWAY'S numbers, not alphanumeric structures or others, just one number for each line.
For example, this .txt file with different values between 1 and 4.

note : the image features a dual zoom of the same file.

il
3
4
1
4
1
2
7
4
1
4
2
4
3
3
1
4
Z
c!
1
4

If we save this .txt file in the same directory level as the patch we are working in,
with this message,

[; arrayname read ourfilein.txt [
and bang it on it or just clicking on it :
The contents of the file will be directly transported to the array :

arrayDNA

=

=arra3rDNA read DNA.txt

In the previous image, noticed that values of the array has overloaded the frame of the array. That’s because,
by default Arrays generates a score with values from -1 til 1.
Due to the fact we have values in the .txt (and therefore in the array) from 1 to 4 it features an overloaded

representation.
How can we rearrange it?

If we make right button over the array and click properties, we’ll see a pop up menti where we can change
different parameters : size of the Array in samples, Size of the Array in pixels (X & Y), range of values in Y

axis, size of the Array itself amontg other features of visualization.

Array Properties -

Array = Graph

% hide object name and arguments
rXaxis————
fom 0 |to
size
rY-axis—————————
fom i Jtoo
size

1 in thi

rayDNA read DNA.txt

Cancel | | Apply | | oK

Once set up values from 0 to 4, Array is rendered like this :

grrayDNA read DNA.txt

arrayDNA

Also another trick and very interesting Array’s feature is to save the content.
Imagine in an array we have a sequenced bassline midi notes. Every time we open the patch, the contents

will be erased and we have to bang it to a certain message to loading it again, unless we have already set up
‘save contents’ in Array Properies .

If we do that, every time we open the patch the content of this Array or memory will be kept like a list of

values embed in the array and therefore in the patch (file.pd) we are working in.
This method works both for data storages and signal storages within the arrays.

Array Properties - 9
Array | Graph

name arrayDNA larrayDNA
size 64 = st R LR SRR

SSSSSSSSSS>>>>> etk ¥ 811 RGBT BT AT e R i B 1
jump on click

draw as:

* points
polygon
bar graph

[l trace color

View list

Cancel Apply OK

Playing around with arrays and .txt files allows us to build sequencers in a pretty easy way, for example :

=

=arrayDNA read DMA.txt

arrayDNA

T

metro 333 - —_— -

igon
I
| 1
I

3 =+ Hw~

/IE
|
1

converts fleating number of the slider into an integer value

=
i converts floating number of the slider into an integer wvalue

e _
tabread arrayDNA read the walues of the 'arrayDNA' from an specific X axis
point
0 in this case an & step loop which starts from the lilac-blue

slider point we have sleected

Anyways we’ll see later in the sequencers chapter of this tutorial.

Samplin

After we have seen different array methods, let’s remind that Arrays we can use it for storing numbers, but
also for storing signal. (In fact the second one is also a data storaging but it has some specific details to take
it into account, to manage it as a signal).

If you are a musician, you’ll already know what sampling is, but as a short reminder, is a technique which
uses audio fragments to play and process them.

Notice that in Pd and in DSP techs in general, sample is not only the concept of storaging audio signal in
buffers, but also the ‘pixels’ of information which describes a particular storaged signal. Therefore for an
specific unit of time, the more samples of information we have, the more detailed will be the signal. That’s
interesting for reproduce preexisting audio files, but for managing signal calculations in real time,
sometimes the HD quality render effort is collapsing with the processor speed, and therefore its more
efficient to balance and tweak it, in order to get a nicer DSP performance.

Let’s see different methods to play an audio file from the computer.
[readsf~]
The first and most simple method is to read the audio file (or in .wav or in .aiff) directly from the disk

(therefore without buffer it). This method is required for large* audio files we want to play.

*large meaning audio from 30 seconds until hours.

Sampling.for.Large.Audio.Files

this method reads the file directly from the Drive

G clicking this bang we can select a .wav file in the computer

5
=openpanel
7
 —
| ;s.ymbol
—
open $1 Il
=" ey |
/ |
= i
ipe 5 J |
|
E .r'r; I
f_-f .‘rr I
start i / I I
/ | loop on off
l;{ ,’I _."QF . ‘='£] = e
- / ;Dlgﬁt
. I f
-
readsf~ 2
" —
és soon as the audioc file is finished it sends a bang which
can be looped with the spigot censtruction o
__.-.'.'-?J
| By 4

[readsf~] as a memotechnique : readsoundfile

is an object where we can describe the number of channels we want to play :

for a mono audio file [readsf~]

for an stereo file [readsf~ 2]

...and so forth until 64 audio separated channels.

But also we can add another argument in the object to define some more specific details like buffer size in
bytes per channel for specific purposes [not often used].

Therefore the syntax :
[readsf~ numchannels buffer.size.per.channel.in.bytes]

In the object [readsf~] will be several outlets. The firsts from the left corresponds to the channels that has
been described in the object. There is also another outlet on the right bottom which trigs a bang as soon file
has ended the whole reproduction. Therefore if audio sample is correctly edited we can make easyly a looper.

In the previous example due to the fact we have been using a symbol (menti put > symbol), the first time we loaded the
file from the HardDrive the path has been storaged in the symbol. So anytime we want to make a loop the sequence of
triggers first trigs the path and after 5 ms [pipe 5]* trigs the [1] message which starts the play.

The object spigot is in charge if we want to make this flux like a loop. So spigot is in fact like a gate that is opening / not
opening >> flux continuity / not flux continuity

*pipe is a delay of data very useful to scheduling instructions and dataflow.

Recording : [writesf~]
The opposite function of [readsf~] is [writesf~] that is an object which can capture or record any signal that
is throwing into it.

[osc~ 111]
|

[writesf~]

That’s an interesting feature if you want to record a performance of your patch within the DSP.

Remind that in order to record some running audio is important to follow an specific order :

1.write the name of the file we want to create in a_message associated to writesf~
[open /your/path/Desktop/record.wav [

2. connect whatever signal you want to record into the writesf’s channels you wanna record (L+R if is
[writesf~ 2]).

3.If you are ready to record, then Click on the message created before [open /your/path/Desktop/record.wav

[
4.click on [start [message, to init the recording

5.click on [stop [message, to stop the recording

note :_clicking on the message with your path and name.way it creates a log file that iniciates the recording
with the instruction [start [. Therefore if we do not click on the message, log will not be created and Neither

the audio record.

Recording

recording a signal into an awdio file

O

\ [open /tmp/foo. wav 16bits .wav file
= = = . .
metro 111 open -bytes 3 /tmp/foo.wav 24bits .wav Tile
random 111 [open -bytes 4 /tmp/foo.wav 32bits .wav file
‘j\ steps 1 edit your path name ap] G

‘osc~ ?pen Shome/oh/Escriptori/ recTST. wav

3 click over the pathname messsage. This will create a log
*~ .89 | and header for your audio file

2 check if signals L + R are connected |

Start 4 start recording

Etop 5 stop recording

writesf~ 2

[tabplay~]

maybe the most precise method to sampling in the classic sense is with the object [tabplay~]

First we have to load a .wav or .aiff file into an array or memory that after we can trig, and even loop it.
Notice that in order to adapt an audio file into an array it is necessary the object [soundfiler] and it previous
message [read -resize $1 arrayname [

Sampling.for.Short.Audio.Files

this method put the .wav file into a memory {(array) which
later can be processed

= click the bang to select a .wav file from the computer

openpanel

read -resize $1 memory

soundfiler start = m ""*-._ < toggle linked at spigot makes a gate which passes or not
x & the incoming data, in this case the bang triggered as soon
765599 number of samples . as file is completely played

=t?abplay-— MEMory 1
B y
l| D < bang triggered as soon as file is completely played

EI' < volume or amplitud from & to 1
L -

L

16 lenght in seconds dac~

16600 lenght in miliseconds

With [tabplay~] we can play the whole sample like in the previous example, but also we can make another
use of it that is slicing.

Slicing is a reproduction of a particular section of the original file that we can manage with messages that
defines the init point of the sample and the lenght in samples of the slice > [0 4410 [[100 4410 [etc.
In the next figure a tiny sequencer of 8 steps triggers several slices.

? =< click the bang to select a .wav file from the computer

Iopenpanel Fl

fead -resize %1 memory2 metro 333
soundfiler ?
L s
785599 i
24 =

4

=)

s trigs

r trigl r trig2 r trig3 r trigd r trigs

= = =
2 4418 éﬁDD 4418 éﬁﬁﬁﬁ 4418 éﬁ@ﬁﬁ 4418 éDDE 4418 messages from an X sample and duration in samples
T\ T -

tabplay-~ memoryEL

E:] =< bang triggered as soon as each piece is played

I |

= yolume or amplitud from @ to 1

dac~

If you are an electronic musician you can jump this introduction :
Synthesizers both in software and hardware are beatiful instruments to reproduce a massive range and types
of sounds, from the imitation of natural sounds until the production of unique and particular sounds.

All this massive range of sounds, can be produced by a vast number of techniques and methods, but anyhow
we can build any type of synthesizer from particular ‘sonic bricks’, that afterwards we can combine, organize
and filter in complex structures.

These bricks are refered as Waveforms driven by Oscillators.

An Oscillator is one of the most basical conceptual element in a synthesizer :

In hardware framework, it translates electricity to an oscillating acoustical signal.

In software framework, are functions which translates data into an oscillating acoustical signal through the
DSP.

In pd there are some native waveforms and some others that we can build.

Sinewave Oscillator > [osc~]

sineWave [osc-

L [|
._}osc? ESﬁ | hertz 05C
'\ A{volum)
e .\\\ //—.\\\
r startstop K < K
dac~ metro ZEE)=
tabwrite~ osc
Saw Oscillator > [phasor~]
(half) saw >
(full) saw >
Saw
saw.half
- = =slaw tooth full
[phasor~ - N D —— =
5aW tooth | hertz phasor
|: 1 ‘hasor~ 448
s = 28]" hertz ohasor -
hasor~ T *e T
K A(volum) I
i r startstop /|/L [Al{volum)
;E?tro 111] == r startstop
dac~ tabwrite~ phasor Fmet ro 11T

dac~ :
tabwrite~ phasor2

Square Waveform

square
sincronitazacio de la fase
q26 | hertz Square
— O =
e = — guadrada
[T Bk
e

=7 UL

metro 111

MJ

T tabwrite~ quadrada

L
:E = Alvolum)
I

Triangular Waveform

Triangular
hertz
‘L smcronltzacm de la fase
>
— =triangle
e 1h =
= asor- -
f‘as‘" f triangle
I r?
L. I T
q ;"—" o
+~
I -
=
-~ 1 [startstop
I A(volum)
. metro llT
~ __=
F‘- tabwrite~ triangle

Noise Waveform

Even is not exactly a waveform type, white noise [noise~] it is a very common ‘brick’ in Synth’s World.
White noise is a pretty particular sonic element in which all frequencies are reproducing at the same time.
For this reason is a very used element in substractive and percussive synth techniques.

White noise

noise EOHE

noise~

=|:_5tart5t°p
Af{volum)

~ metro 111
= L

tabwrite~ noise

dac~

4.2. Pd Phases in Oscillators and Phasors

Phases can be set both in [osc~] and [phasor~] objects through the right inlet.
Notice that degrees are represented in a range from 0 to 1

Oscillator.Phases

phas ';Ea. 75

é./ &

-/fbang -/?bang -/}:ang bang
énapshoh snapshot~ snapshot~ snapshot~
tabwrite phasel tabwrite phase2 tabwrite phase'? tabwrite phas e4=
phasel phase2 phase3 phased

As you may know there are a big amount of synthesis types.

However we differenciate among different classical categories like additive, substractive or granular.
Another categories and techniques of synthesis can be based in physical models, in probabilistic models
(stokastic synthesis), or imitation of sounds like formant synths imitating human voice, among others.

Visual Domain Analogy > Drawing different colors and shapes in a blank and white canvas.
The additive synth would be the whole picture.

Additive Synthesis : several layers of generated sound combining and interacting between them.
In the next example, a group of 8 oscillators with superior harmonics (multipliers) is changing randomly the

amplitud of each line before mixing them. The result is a continuous tone / drone in which timber is
changing all the time.

Loadbang

&
frequencia fonamental metro 1800

=

e
~HZ ¥
85

g

]
"

B le— S T
T
4
&
E
» p— o Hin I -IT'I
]
a
L}
o
o
o
2

dac~ tabwrite~ sint_adit2

Synths

4.4. Pd Substractive Synthesis

Visual Domain Analogy > carving with different shapes and sizes the surface of a black canvas, sculpting it

and arriving to the canvas basement. The Substractive synth would be the whole sculpted picture.

Substractive Synthesis : sculpting with different kind of filters a massive block of sound generated usually

with white noise [noise~].

In the next example an oscillator is modulating a white noise which afterwards can be filtered with hipass

filters or lowpass filters.
[lop~ value.in.hertz]
[hip~ value.in.hertz]

Substractive.Synthesis

Esculpting white noise [moise~] with hipass [hip~] and

lowpass [Llop~]
- L |
noise~
= & >0 hertz
-c;scv 5 hip

= E |

< lop o] hertz
hip
20)

hip~ 118 7
=- - hip~ 118 more efficient and precise if you add a chain of 3 or 4
HipassFiler B { units of the object. This trick works with lop~ hip~ bp~

Loadb
Loadbang

s startstopg

hip~ 118
r lop
—
=Pl
& [
ZowPassFilter Lop~ llE!E?EFi:'I
lop~ 116860 =Tt substl
e ——
r startstopk
? i
metro 208
iy
.
-
dac~ tabwrite~ sint substl

As a reminder for newbies:

A hi-pass, features the whole auditive spectrum starting from the hipass parameter or threshold.
A lo-pass, features the whole auditive spectrum until the lopass parameter or threshold.

In the next example a white noise is filtered with a band pass filter.
[bp~ value.in.hertz]

Substractive.Synthesis

Esculpting white noise [noise~] with bandpass [bp~]

s
noise~

s centerfreq >0

r centerfreg

—_ra [|

= &
[BandPassFilter bp~ 11868 50 IZM

r startstopé

EQ_E.
metro 200

tabwrite~ sint subst2
dac~

As a reminder for newbies:

A band-pass, executes a ‘mountain-shape’ filter from an incoming signal in which for a certain frequency
defined in the bp.

The ‘mountain shape’ can be more or less vertically stretched depending on the amount of Q parameter,
producing more or less ressonant effect, according the reflections inside the cavity of the ‘mountain-shape’
Therefore:

High values of Q represents a kind of huge and vertically stretched mountain, and will be MORE ressonance
on the frequency range defined by bp~.

Low values of Q represents a tiny hill wider in the bottom, and will be LESS ressonance on the frequency
range defined by bp~.

e

The previous examples may be a bit obvious and ‘nothing’ special as a synths, but may be can constitute the
basis for other operations and tricks in time.

For example, with the band pass example, we can introduce a couple of tiny algorythms to create some
particular effects.

In the first one (top left), some kind of sliding or portamento effect is produced in the band pass frequency.
Every second is doing this effect with a random frequency in a different amount of time, therefore a slightly
different action within a repetition process.

In the second one (bottom left), a random generator produces different sudden frequency values.
This sudden changes produces some glitches with a particular sound-ressonant bubbles effect.

Substractive.Synthesis
ISonic_Design

A tiny generative algorythm to create ramps of the center
freguency

metro 1609

noise~

| Trandon 117 [randon Ex]

."'IIII T I\\

i |; range . | | fr centerfreg
[ihs | J_- ro
lgd countup bp~ 11ElEIEI=
[| =
P BandPassFilter
* 34 =
-
[|
s centerfreq
408
C1 |
50 29.344

r startstopb

A tiny generative algorythm to create random values of the E
center freguency

=
metro 200
o] 7

I o
metro 200

tabwrite~ sint subst23

random 380 dac~
2145 sint subst23
—
i | .
s centerfreg 145 Y P
] |
s 0 3.397

Notice that those algorythms are a calculus layer over the signal structure. Therefore it is possible to combine
and reproduce several algorythms at once, producing expressive and unexpected effects.

Another interesting technique, originally conceived from digital music systems, is granular synthesis.
Granular synths are somekind inspired by quantum physics applied to sound.

In this technique a particular audio sample is reprocessed like if we would have a microscope targeting over
a tiny sample slice, with different non-linear parameters to tweak like amount of particles or grains,
asyncrony of them, among other non conventional parameters.

In pd Vanilla , that is the version in which we will be able to compile for LICH module, granular synths are
not the most complexes, but at least we can use it to stretch and distort samples as an expressive sonic
resource.

Granular.Synthesis

example by Johannes Kreidler from weww.pd-tuteorial.com

[s] 1
penpane
\\
L
gread -resize $1 granul Loadbang
28 soundfiler
+ size of sound file

=
phasor- 5 startstopB

fxpr 44188 / $T1

speed you want '-\ -
fh‘psor-— runs at original speed
|

L]

o

- = window, here 256
*= 256 . .
samples in size

samphold~

r startstopd
=

metro '!B=
al

/

256

tabwrite~ AS

8.7
r startstopg I
P -
.
*e
[-
*m

Y

dac~

Notice that these techniques requires an advanced level of DSP Programming skills, that often as a
musicians, or coder-musicians we use them just with few tweaks.

Another example of granular synth is the next one, borrowed from OWL rebel Tech repos :

Granular.Synthesis

example from OWL & Pd Tutorial Parameter A Parameter B Parameter C Parameter D
| L / g
| * -09 fs = * 72
1 ; 530000 k7
* 500 - - ==
- v 1 + 100 T
+ 0 I I — s grainpitch
I s delayfeedback s grainwindow
5 delaytime

Zoad wav file

[
openpanel \ l;s'ﬂ':l.got
read -resize $1 memory+ Eabplay* memory+

'Soundfiler i T~ drysample

I?955.9-9 - s volgrainer \ I

adc~ o
d granular.synth

Eample 2 grain

R — fic 2 grain

s~ drysample

s~ grain dac~

If you like this kind of synthesis and want to master it, the book ‘MicroSound' C.Roads is a very nice
reccomendation.

https://mitpress.mit.edu/books/microsound

With synthesizers we can produce synthetic sounds with the most fundamental bricks like we already saw, but

also is a lot of fun to model, transform and sculpt any preproduced synthetic sound. Thats the process of
signal filtering.

Filtering Signal

Like we already saw, we can filter any signal through the classic filters lopass [lop~ freq] hipass [hip~ freq]
and bandpass [bp~ freq Q] .

If we want to build an Equalizer we can split the main signal into the EQ channels we want, and drive each
line with the appropiate [hip~] and [lop~] thresholds.

In addition in the end of each line, there is an attenuator [*~ 0.74] due to the fact that signal line is
triplicated.

3.Band.EQ

lo med hi
o — i
i] T lst.thresH
.". — B
/ ! | I T
inlet~ —] s 2nd.thresH

T
5 3rd.thresH

r 1st.thresH

lo med

hi

r 2nd. thresH e
¥ —
i
hip~ 2500 _—
‘*'/ 2nd. thresH
i 5 hip~ 2500 2 bl
r 1st.thresH hip- 5 hip~ 232 hip~ = e — _—

r 3rd.thresH
=

(e

s =
+ 8

Top~ 2560 o~ 12221 Gl e
\.:. S e
Lop~ 232 lop~ 2560 /" [lop~ 12221 __—
4 P
Lop~ 232 lop~ 2568] [lop~ 12221

outlet~

F iltering Signal

Maybe Delays is one of the most classic effects (but at the same time essential) in signal processing, due to
the fact that is not affecting directly the character of the sound, but is affecting it in the time domain.

In order to build delays we need to send any particular signal into a buffer with

[delwrite~ name.of.delay default.time]

and later call it with [vd~ name.of.delay] to the main signal mix. The values inside this object has to be
managed with [sig~] which allows to introduce numbers (data) into a signal object. Therefore is a method to
dinamically introduce delay times into the [vd~] object.

In addition we can reinject the processed signal’s delay into the original loop through a gate [*~] allowing to
reinject signal from O to 1 (zero reinjection to full reinjection feedback).

Note: if you use delay’s feedback in LICH applications, feedback values has to be until +- 0.75 because
firmware doen not support calculations fro higher feedback values.

?= fromsignal r delai
[T
1
L |
I |
| 908.55
= |
metro 3860 L
sig~
Volume 8-1 Ly reinjection [
AT E 1 | vd~ delayl
s~ fromsignal |
|
s~ dry
*
o [
delwrite~ delayl 3880 s~ delayl

Another interesting feature with Delays with Digital Processing techniques, is to quantize the delay times
related to a certain master clock we are running.

Quantized Delays

In this case the algorythm to quantize time, is as simple of use [t b f] trigger bang float which from a certain
incoming value (in this case [r timequantized]), can be easyly sliced or quantized in proportions of time of
the main clock with the initial sent [s timequantized].

Therefore Quantizations can be controled just by the lilac Hradio Button.

In this case there is a couple of Hradios : on the left for quantized macro delays and on the right for
quantized micro delays.

= i

= = =) = =
: - .-’ 128 tbf
Quantized.Delay L4 D 7 _teq
' ' h 1443 / $4.510 /

& &4

B B
* *
s delaiQuantized s delaiQuantizedMicro

T:-- fromsignal+

.;.r delailuantized I delaiQuantizedMicro
i — 5
1 |
N— | 288.
5?? 3 |
met ro 3DDEI
= timequantized i
sig~
‘.I'olume a-1 s reinjection
3 ik ||: T] \:d- delayl+
~ fromsignal+ ‘
5~ dry+ |
S
o
delwrite~ delayl+ 3888 s~ delayz

Filtering Signal
5.3 Reverb

Like Delays, Reverb effect is an action that affects the incoming signal in the time domain, but specially

in the space domain.
With this classic effect we can simulate different spaces from a tiny room, until a massive hall.
In Pd reverbs are pretty simplified objects, due to the expensive processor calculus of this kind of filters.

[rev2~] less Cpu expensive
[rev3~] more Cpu expensive

REVZ~ - a simple 1-in, 4-out reverberator

The creation arguments (level, liveness, cCrossover
frequency, HF damping) may also be supplied in four inlets

as shown. The "liveness" (actually the internal feedback
percentage) should be 188 for infinite reverb, 98 for

L -
osc~ 484
i longish, and 80 for short. The crossover freguency and HF
E damping work together: at frequencies above crossover, the
*~ feedback is diminished by the "damping" as a percentage. So
zero HF damping means egual reverb time at all freguencies,
and 186% damping means almost nothing above the crossover
freguency gets through.
B2 | level, dB
| Bl liveness, B-188
{ T
." / FL) crossover freguency, Hz.
f / /=-
/ / Te i
f / - 2 HF damping, percent
L = o o
rev2~ 92 99 3000 20
dac~
Reve ["b REV3~ - hard-core, 2-in, 4-out reverberator
-osc~ 4E)cl=

The creation arguments (level, liveness, crossover

e
] level, dB
T
/ frequency, HF damping) may alsc be supplied in four inlets
as shown. The "liveness" (actually the internal feedback

2 liveness, 0-180

g

i crossover frequency, Hz. percentage) should be 180 for infinite reverb, 98 for

/ - =El 3 longish, and 88 for short. The crossover freguency and HF
-~ HF damping, percent damping work together: at frequencies above crossover, the

e 9‘3' 9[5*'30[% 20‘5 feedback is diminished by the “"damping" as a percentage. So

r - - zere HF damping means equal reverb time at all freguencies,

and 106% damping means almost nothing above the crossover
frequency gets through.

.aaC"‘

Filtering Signal
5.4 Distorsion

There are several kind of distorsion, but one of the most common is the BitCrusher, a type of distorsion that
reduces the bitdepth of the running signal, altering the waveform itself.

The next example is an algorythm of bitdepthing.

For low values of the top lilac slider, incoming signal is not filtered

For high values of the top lilac slider, incoming signal is transformed into a much more ‘pixelated’ / squared
waveform than the initial one.

BitCrusher

fosc~ 60
* 1
L=
+ 1
7
&
tff
==
*
=
é];27 loadbang
=r— =+ l
*~ 127 /' 1
/! switch~
o
bitcrushvis L /
Wrap~
P I / N
-~ /
\\) I / s startstop727
E K ,’! I‘ f.-"
s =l
g \/ /~ 127
1
L2
§r§|startstop'f2'f
metr
=
N~
tabwrite~ bitcrushvis
[osc~ 68
i |
=
+ 1
-
-
tff
=
*
T 07
1
o oadbang
— + 1
*~ 127 _/':' 1
/ switch~
s/
)it usnvis L j,r
wWrap~
./ O

’—,\'L I'" 8 ,//’ Is startstop727

r startstop?27

metro 16?
=

dac~

tabwrite~ bitcrushvis

Filtering Signal
5.5 WaveShapers
WaveShaping is an sculpted/extruded technique of an incoming signal.

According to a certain stored waveform’s geometry, signal is processed with this shape.

In pd we can use different methods to build this filter.

With this object associated to an array or memory (in this case taula), an incoming value is processed as the
lead frequency of an oscillator which shape or waveform is the one described in the array (taula).

In DSP terminology, [tabosc4~] is a traditional computer music style wavetable lookup oscillator using 4-
point polynomial interpolation.

It’s a nice technique to manage waveshaping with oscillators in a simple way.

WaveShapers

taboscd~

4-point interpolating oscillator

taula

/ .

drawingwave EE frequency through table shape
S
\‘.\

e =
taboscd~ taula

r startstop7111

metro ZEIE-I

tabwrite~ drawingwave

In DSP terminology, [tabread4~] is used to build samplers
and other table lookup algorithms. The interpolation scheme
is 4-point polynomial.

1824 sample array

note Due to interpolation, size is increased in 3 units more

With this method [tabread4~ array] we can modelate in an in this case 1027
easy way different shapes in the array, with trigonometric

messages like sinesum, cosinesum among others.

=

gaveshapex sinesum 1624 1 8.2 8.3 8.1

With this method, window size (X) in samples has to be
powered 2 (32,64,128,etc), that we can call with the

. inlet~
appropiate messages. r
[; array sinesum X string.of.values.that.describes.shape [-
and in the muliplier of the signal featured in the examples T _
[*"’(X)/2] *= K2 1824 / 2 has to be writen in the multiplier

tabreadd~ waves hapex=

outlet~

Notice that the more window size (X) will have the waveshaper, the more accurate or less glitched will be
the resulting signal.
For example :

WaveShapers

tabread4-~

4-point-interpolating table lookup

arrays has to be powered 2 and after rewrite in the
multiplier the size of the array

Napex Wavesna Z:l_gj{ 2
—_—

N —

1824 sample array 32 sample array

note Due to interpolation, size is increased in 3 units more

5 - note to interpolation, size is increased in 3 units more in
in this case 1827

this case 35

- =

waveshapex sinesum 1824 1 0.2 6.3 8.1 waveshapex2 sinesum 32 1 8.2 6.3 8.1
inlet~ inlet~
4+ T = T
*~ 512 1824 / 2 has to be writen in the multiplier *~ 32 32 / 2 has to be writen in the multiplier

tabreadd~ waveshapexl: tabreadd~ waveshapex2

outlet~ outlet~

Following in this line of comments, lets see how behaves the array [in this case waveshape] depending on the
written data on it.

If we have a simple ramp, incoming signal is not processed, so the result its gonna be like if there is no
waveshaping filter at all. See this figure :

tabread4~

4.point.interpolating table lockup

[tabreadd~] is used to build samplers and other table Lookup
algorithms. The interpolation scheme is 4-point polynomial.

[osc~ 68

\thats the algorythm of a waveshape for a 1824 sample array

1

+

~ 513

—

EVLN tabreadd~ waveshape

1624 sample array

r startstop7lll Set ramp
- With a ramp from -1 to 1 the filter of waveshaping is not

pd NoWaveShapeAffection affecting the incoming signal
‘metro 167
=

—

tabwrite~ waveshapevis

Otherwise If we have different shapes from the lineal ramp shown before, incoming signal is processed
through the geometry of the draw shape, like if the previous ramp was the axis of the calculus.

In this example, a simple sinewave is producing a wooble wave like in visualization’s array waveshapevis is
featuring :

tabread4-~

4-point-interpolating table lookup

[tabreadd~] is used to build samplers and other table lookup
algorithms. The interpolation scheme is 4-point polynomial.

osc~ 68

\thats the algorythm of a waveshape for a 1624 sample array
+

~ 1

= 512

tabreadd~ uaveshaple‘

1624 sample array

r startstop71ll

metro 167

.y
p click and Set basic Sine
tabwrite~ waveshapevis

'ugavesnape sinesum 1824 1

With this method we can easyly build different shapes, for example building with trigonometric messages :
for example :

[; waveshape2 sinesum 1024 1 0.2 0.3 0.1]

With sinesums we can produce similar effects to a compressor due to the fact that boosts incoming signal
without clipping (in case that the stored shape is fit in the limits of the array (-1 to 1).

-osc~ 6?

- AN
1 whveshape2

512

waveshapevis2

tabreadd~ waveshape'?

\

r startstop7111

Here you can see the different timbers using different

= trigonometric shapes.
get ro 167

H <<< Click over these boxes
gaveshapez sinesum 1824 1 8.2 8.3 6.1

=

tabwrite~ waveshapevis2

waveshape? sinesum 1624 6 6.2 6.2 6.3 0.1 6.6 6.3 0.2 8.3 <<« Click over these boxes
l=lELl 8.2 8.3 8.1

waveshape2 cosinesum 1624 @ 0.2 8.2 6.3 6.1 8.6 6.3 0.2 8.3 <<=< Click over these boxes
8.1 6.2 8.3 8.1

=

[; waveshape2 cosinesum 1024 0 0.2 0.2 0.3 0.1 0.6 0.3 0.2 0.3 0.1 0.2 0.3 0.1 [

Like the previous one, thik example uses the same
construction with tabreadd array
fsc* 60
o~ 1| Waveshape2
-~ 513
hapevis? I

tabreadd~ waveshape?

P

r startstop7111
metro 167,
=

tabwrite~ waveshapevis2

waveshape? cosinesum 1624 © 6.2 8.2 6.3 8.1 8.6 6.3 8.2 8.3 <<< Click over these boxes
l=lE!,l 8.2 8.3 8.1

Another interesting feature with this method is to draw over the array with the mouse so we can modificate
shapes with strange and non regular geometries :

WaveShapers

tabread4~

4-point-interpolating table Lloockup

[tabreadd~] is used to build samplers and other table lookup
algorithms. The interpolation scheme is 4-point polynomial.

-osc~ 6?

thats the algorythm of a waveshape for a 1824 sample array

*~ 517 . '|

tabreadd~ waveshape | i ‘

o el
1824 sample array
1
£ 2
r startstop7111 Set ramp)) . .
With a ramp from -1 to 1 the filter of waveshaping is not
pd NoWaveShapeAffection affecting the incoming signal
metro 16'?I
=
.
click and Set basic Sine
tabwrite~ waveshapevis

ga\reshape sinesum 1824 1

In DSP terminology this object read numbers from a table and output as signal.

Like in the previous its useful for drawing distorted shapes. Notice that the multiplier and the array size is
100 by default. You can change this in order to produce some more distorted effects.

tabread~

read numbers from a table and output as signal

r startstop7111

Xy

£ o gaveshaper sinesum 1824 1
\

metro 167 .

L

tabwrite~ wave

Waveshaping RECAP :

May be you may think, that due to have several waveshape options and methods, which is better to use?
If you want to make noise registers may be tabosc~ and tabread~ are useful.

But if you wanna process your signal with more accuracy tabread4~ is a very cool method because allows
filtering signal both in a clean way and in a distorted / glitchy way depending on your performance needs.

[adc~] analog to digital conversion is the object that introduces any available* line-in or mic, already set up
in your sound card parameters. In laptops usually is the incoming signal of the in-built microphone, unless
you load an external sound card with its incoming ports. In this case if you have an external soundcard with
for example 4 mono inputs, those will be refered as [adc~ 1][adc~ 2][adc~ 3][adc~ 4].

In LICH module we have a couple of incoming audio signal ports (IN _L) and (IN _R) that corresponds to
[adc~ 1] and [adc~ 2].

This piece of code features the incoming signal’s render from the laptop’s in-built mic.

Toadbang

metro 208

adc~.monitoring.incoming.signal e

wavetorm monitorin
adc 9

adc~

R

r triggvisadc

tabwrite~ adc

r startstopadc
$0-tadc spectrum pd spectrum

dac~

With the object [env~] we can monitor the envelope of a certain signal in this case the incoming signal of the
mic. The rate of analysed data will be very fast, but we can threshold it with different values in order to make
some conditional tree of triggers according to the incoming signal’s strenght.

With the object [snaphot~] we also can monitor the envelope at a certain desired rate [with an incoming
[metro ms] object, that maybe can match with our clock for other elements in the patch, that will bring us
more sync effect.

adc~.envelope.thresholds

r triggvisadc

r~ adcsignal

snapshot makes a 'visualization' of the incoming signal

=
adc~ depending on the incoming metro ratic in the same inlet

snapshot~

s~ adcsignal

- the [env~] cbject takes a signal and outputs its RMS
eny~ amplitude in dB (with 1 normalized to 180 dB.) Output is
bounded below by zero.

sel 1 sel 1 sel l sel 1 sel 1 sel 1 sel 1 sel l sel 1

Nt

In this example, for higher values than 85 [> 85] detected in the [env~] analysis, it will trigg a bang that in
this case is connected to an oscillator with attack and decay control, therefore a percussive sound.

adc~.envelope.controlling.triggers

gdc~ r- adc51gnaLS
env~
=r.\~-adcsigna1.5 s~ adcsignals $685T)
env-~
68.53
T |
s envelope.monitors sel
| attack | decay
L1) :262.8

r: =
I L

-osr- 111=

One way to translate signal to data is with the object [snapshet~] triggered with a [metro] object at the

desired ratio.

On the contrary, one way to translate data to signal is with the object [sig~].

From.Signal.to.Data.and.vicecersa

r triggvisadc

r triggvisadc

napshot~

Ts'
L

>-8.12

We can use envelopes to control generatively/automatedly different parameters. For example in this case the
analyzed envelope data result is controlling the amplitude of a couple of oscillators.

adc~.envelope.controlling.amplitudes

?dc~

?~ adcsignal2 s~ adcsignal2

Env~

50.84

[I

s envelope.monitor

r envelope.monitor r envelope.monitor
108 1080
osc~ 55 BsC~ 55
1 74 $1 : incoming value// 74 : time of progressions in ms

changes of amplitude directly to *~ generates clicks

| X

Fo il

line~ with line~ we can correct clicking

5~ tstl o~ tstl] |r~ tst2 5~ tst2

dac~

Or even the envelope can control the frequency and the amplitude of an oscillator, like in this example :

adc~.envelope.controlling.amplitudes.and.pitches

=adc~

=r~ adcsignal3 s~ adcsignal3

Env~

51.22

LT]

s envelope.monitor3
envelope.monitor3

r envelope.monitor3

*

168
[:51.22
0sC~ 5?
1 74
line~=

dac~

6.2. analyzing incoming signal

There are different objects useful for analyze a certain signal.

Anyways there a couple of methods that_does not work in the rebeltech compiling process which are
[fiddle~] and [bonk~]...but at least we can measure the incoming signal wtth [env~] as we already saw.

detection. functions.of.incoming.signal

E¥Ed=?; this object does not correctly compile in Rebeltech LICH
Browser Application
=ac|r_--
fiddle~ 1824 1 28 i
Irnu;e;l-%n\n
spigot spigot unpack un:a/r:; unZir:; unpack
é7.9291 I 2,3313?335 I 2.333639’159 2.33354193
print pitch print attack I7.8475 43.3564 141.881 A1198.61 1251.63
cooked pitch bang on raw pitch amplitude jpdividual sinusoidal frequency components
output attack and amplitude (d8)

detection. functions.of.incoming.signal

this object does not correctly compile in Rebeltech LICH
Browser Application

JDonkz, in order to grasp envelope detection try with [env~] and
filter outcoming data as we saw before

=adc-_

bonk~

route $1 $2

unpack

Ispigo?\[l Ispigo?\E]

print raw print cooked 4.83483

17.1367

detection. functions.of.incoming.signal

Env-

Remember to use
this method >>>>>
within your LICH Pd algorythms

sel 1|

Envelopes & LFOs

7.1 LFO : Envelope Modulation by Oscillators

As you may know LFO is a very common and classic effect in electronic music.

It consists into the modulation between a couple of oscillators, one the lead frequency, and the other the LFO
modulation rate with very low values of frequencies.

In pd the most basic method to build an LFO is multiplying the signal of two oscillators with very different
frequency rates (the lead one and the modulator one).

LFO Low Frequency Oscillator

L i . LOwFreqguencyOscillator can be in a desired range of low
This is the most basic LFo metheod = a lead oscillator

f ies,
modulated (multiplying the signal) by a Lowfreguency requencies
addictional oscillator
LFO+
L I
L
s LFOfreq r LFOfreq
21.665
*
[
H =
Lloadbang
5~ renderlfo metro 15?I —
r~ renderlfo
?1 renderlfo+
T~ renderlfo++
dac~ tabwrite~ LFO+
s startstop?77
LFO+
SN 4
S
Also we can easyly Also its possible to build some experimental LFOs like LFOs
l)llil(i some more over a previous LFD making some freguency proportions
unconventional r I LFOfreg
21.685
i I _ [_ e
and expe_rlmental s LFOfreg osc~ BO o5C~
LFOs like put a
chain of LFOs - r LF0freq
therefore an LFO LFdfreq L

. 1.665 258
over a previous losc- 68 gse-

LFO and so forth. \ / e

1>1.859

r LFOfreq
z

¥ 9.33

.
osc~

=
o

/ -
_— N

~ derlf
=L s~ renderlfo++

dac~ dac~

Or also to be more accurate in the LFO frequencies to tweak with proportions of a certain value (in this case
[0.125]).
In this sense, quantizing LFO frequency rates like the previous one we can build some particular sequences

You can control LFD's LowFreguencies with accuracy making a Thats useful if you want to make proportions of LFO
multiplier with [t b f] over a certain value [8.125] in frequencies
this case

CITT T TTTTTTTTTTITITTITITI]

Lo

+ 1

i

tbf

LFO

Toadbang

metro 167
r startstop?77 Remember that with snapshot we can monitorize the envelope
at a certain rate. (in this case metronome with receive

tabwrite~ LFO message startstop777

s startstop?77 Snapshot~ snapshot~

LFO conversion todata [|] [T]
>-0.87 from -1 to 1 20. 460 from 8 to 1

of LFO values

LFO Low Frequency Oscillator SEQUENCED

LFOseq

TN

With the previous LFO guantization algorythm we can even
make some sequences of different LFD rates. for example:

X cr——

= —

etro 100

[

sel 2 6 18 14 1B 22 26|

ANy 7

13 8] r startstop777 |: I

: 3 g

metro 16?

tabwrite~ LFOseq

dac~

5 LFOvalue

Envelopes
7.2 Playing with envelopes in percussive synths

Synths are amazing instruments converting electricity into acoustic signal.

In digital world we would say that different kinds of data produces changes in the DSP extracting an acosutic
signal.

In pd there are many kinds of types and techniques, but let’s see how to build percussive synthetic sounds.
To produce them we have to control envelope as the classic AttackDecaySustainRelease structure, but even
we can go in a much more simplified way, just only controlyng decay or attack + decay.

First we need signal generators that in pd -LICH oriented (vanilla), we have a couple of functions to do so,
and already saw them :

[osc~] sine oscillator

[phasor~] half sawtotth waveform oscillator

[noise~] white noise generator.

With those objects we can produce signal that after we can control in its decay with the object [line~] that
produces a ramp or progression between two values. In this case message [1, 0 $1[means that any time the
trigger is activated, the envelope of the sound will go instantly to the maximum (1), and then goes to (0)
(silence) in $1 miliseconds. As $1 is a variable, means that any value we are dinamically changing it will be
cosidered as $1 (in this case with the blue slider).

percussive.synths

| decay | decay K
[65.70 E‘“‘;

L
. B 5l - = -
$ hasor~ 111 i‘ BEST noise~
1

;
- AN IL

[
5
osc~ 111 I
1

ine~ ine~

N _~ 7

h : R

dac~ dac~
dac~

Also we can complex a bit the algorythm in the line~ section, introducing both values : one for attack and the
other for decay.

percussive.synths

osc~ 55

The next figure features /\E
the same algorythm in

different compacted \
forms. On the left the =
whole algorythm, in the A

center a simplified one, and on the right an encapsulated method with graph [ment put > graph] that we saw
iWl>.2. Pd Packaging Algoryhtms

Notice that line is not only applyed to envelope to control decay time, but also to slide in time the incoming
frequency of the oscillator producing a portamento effect. In this case with the message [$1, 55 200[linked
to line~ in the left version, or [320, 55 200[in the center version.

In this last case, message [320, 55 200][indicates the start frequency (320hz), the target frequency (55hz) and
the sliding time between both frequencies (200ms).

Ipercussive.synths

fred. i nicia 1

Z, 8 temps decay

e b=
B iza. 55 2 i
=""f/~ \ Lmef .5
— 1, 6 1111
Line~ I /g z

1ine~

-

el
4, \

)

percussive.synths

In this next figure >>>>>
is shown a compacted version of a percussive sytnh where we can
control initial freq, target or final frequency, sliding time (slope), I8l decay [§>1111]
and decay time. Therefore a pretty compat and versatile module to
trigg percussive sounds.

dac~

Sequencers
8.Time Machines
A Sequencer is one of the most essential tools in the electronic music production.

As you may know a sequencer is somekind of a time machine or time engine, because it builds narrative
structures in time.

ol I ltoll I I 1o]
ol 1foj 1oJ 1ol
I

[
[
[I o 1 1 1

In the programming domain, this kind of structures can be pretty different, depending on the events that we
want to create.

One of the most classic example is a_fixed linear sequencer.
In this case building an algorythm with a loop section with [med] and a conditional section with [sel]

Linear Sequencer : FIXED

1
.J_-. i [2157.3
metro 186

L
I A +1
R -
\ mod 7 8 range seguencer
T
%
(LTI TTT T T T W I TTTTTIITTITITTIT] r~ kikkl+
- T~ kikk2+
T T = _
) S 2 2% sel 23| r~ kikk3+
115 r= T = = =Tt} .
2 | AN
Volume 8-1 \ Volume 8-1
[- =
d kikk- -! d kikk- -!
Volume 8-1 = f

s~ kikk2+ 5~ kikk3+ dac~
d kikk-_-

5~ kikkl+

8.1.2 8 steps SEQ

Linear Sequencer

‘ Volume 8-1
td kikk-_ -

5~ Kikkl++

T~ kikkl++
- 9.34

dac~

This example is one of the most basic example of a swith sequencer with 8 steps, that que can swith with on /
off any of those 8 steps.

Well need [spigot] object that opens or closes the gate* and also its receive messages for each step.

[s 8xpos1][r 8xposl] [s 8xpos2][r 8xpos2] [s 8xpos3][r 8xpos3] and so forth

Notice that build this structures is somekind like a knit work, due to repeating a certain unit structure.

So if you want to build a 16 or 32 steps sequencer is simple although a meditative work)

*of the incoming trigger that already has to be sequenced in postition with conditionals [sel 012 345 6 7],

; Bxposl Ly 8xpos2 $ 8xpos3 ; 8xposd 8xpos5 r 8xposé r 8xpos? |r BxposB
1 J

r
=
4

8.1.3 8 steps SEQ Phrases

This example creates a different stored pattern combination for every loop.

For do that we have to send and receive a 1 or 0 value in the ID message:

[s 8xposl][r 8xposl] [s 8xpos2][r 8xpos2] [s 8xpos3][r 8xpos3] and so forth
(the receive messages are featured in the previous image on the top)

With the combined messages
8xposl1 1;
8xpos2 0;
8xpos3 0;
8xpos4 1;
8xpos5 0;
8xpos6 1;
8xpos7 0;
8xpos8 0;

is possible to set a particular combination of the whole 8 steps.

Therefore we can make a tree of patterns that are triggered every time the main loop starts.

In this case we have a tree of 4 different patterns but we can build some more complex structures in time in a
pretty easy way.

Linear Sequencer

| 2169.1|
1™ _—

ﬁzf“”f E%Q\,q==
LI XL - N\
B __..-—-""] -.\Tmotl 4

£
H/;ge%aﬁ l‘%ﬁi
\ ..,_H__“"- -

. I". N >
= g eed el

8xposl

i | 8xposl @; 8xposl @; 8xposl @; 1;
;d Kikk-_- Sl KRR Sxpos2 B; Bxpos2 B; 8xpos2 @ 8xpos2 B;
8xpos3 0; 8xpos3 1; 8xpos3 1: 8xpos3 8;
Sxposd 1; Bxposd 0; 8xposd O; 8xposd 8;
Fou 3,3? 8xpos5 0; Bxpos5 1; 8xpos5 @; B8xpos5 1;
[S8xpos6 0; 8xposk 8; 8xpose 1 8xposk 1;
S8xposT 0; 8xposT 1; 8xposT7 @ 8xposT B;
8xposd 0; 8xpos8 8; 8xpos8 @ 8xpos8 B;
dac~

= = = =

s~ Kikkl+++

[95.76

metro 100
T |

—

mod 16
a =
| e
EHHHHHHHD e TT—
s seqi+8
r segt+8 r seqgd+8

T

Volume 8-1

dac~

This example combines a 8step fixed sequencer where we can manually select the desired active step
mixed up with a random 8 step sequencer with different proportions of random that can be tweaked or

cancelled for a certain and desired randomization.

outlet

8.2 Sequencers in Arrays

Another method to define sequences is with Arrays.

In this case a looper is counting the content of an array with [tabread seq] that in this case trigs the storaged
value as a main frequency of a synth with 3 superior harmonic oscillators.

Notice that the values of the array in this case are refered to a midi values. Therefore with the object [mtof]
miditofrequency we can translate values to properly income in [osc~] objects

Linear Sequencer in a Array

[

L
metro 188

ranges

[T ™ [TTTTTITTTITTITTTITITIIITTITIT] seq

FA
i
1

b - 5eq res ize 32
tabread seq lecture of the memory {array seg)

5eq read 88%1. txt
+3l§.‘lI=I

mtof ?idi to freguency
u =

WD |-

F

seq write 89%1.txt

E. - Ta =
/ 2 <3
/ B1e3.8 2155.7
- T -%scf
0s5C~ osc~
1] 1 T
* i %o

S~ mixxx

1legeix un 3rxiu de text

r~ mixxx

dac~

8.3 Random Sequencer with Pentatonics

When we are programming we can build nonconventional methods to build sequences.

For example, in this case a defined metronome is triggering a random value between those values that
corresponds to a pentatonic scale combination. In the code the semitones relation [0[[2[[S5[[7[[91

Usually playing with random is not a straight forward task for nice sonic designs, but in this case we have the
advantage that between pentatonic tones every tone matches ‘harmonic’ with the others. Therefore any
random combination between those semitones will be ‘audible-comfortable’.

Random S

Sequencing pentatonic tones

Setro
betal B (BIEIELE Q &
[genta E(EIEFI(E(@m s — T
i =
/ EIIO e
NAITT random
“random 5 2 1 :
'sele 1234 |Z| 4 o
i, \ \ / ’
= o | /
= rd A /
[semitones penta o[2 s 7] ——— > "
e e a
LR EHIEED] A |pa sesitones. randon
102 L
S -
Ve s freq.pentatonica
I octaves thf
S 12 = F 28
= el [= =
+ 24 e semitones penta Octaves
— —r
mtof 3 -
's freq.pentatonica
[T~ muxxpentta mixx
r freq.pentatonica
dr%
2164 .8 -_—
i =2
m] level, dB
] G liveness, 8-100

B erossover frequency, Hz.
B | B dasping, percent

rev2~ 96 50 3560 28

5~ mixxpentia

8.4 Stokastic & Probability Sequencers

Probabilistic (Stokastik) Sequencer

Another non conventional method, borrowed from Xenakis
researches decades ago in probabilistic sequencers / synths, is
this tiny example of 3 triggers (with 3 embed percussive
sytnhs) that can be both triggered in 3 types of combinations
and amount of stokastic ratio (from less random to more
random probabilities that triggers are activated or not.)

Here the internal code with all probability operations.

[stokastic.patterns st
& = i I stokastic.patterns
5ol 8 j S——y [
: 6 :
1 2 b 3 BRI ; T r metrobangLxStok
(s fT By ST 0N f
's kombixs|'s kombis / = - = - < H O
— s koubiXs| 's kombiS/ s kombiXS| s kombis| -
. s kombiM 5 kombiM e
T1320, 55 16 /@
R =
line~ & B
I metrobang r metrobang I metrobang ‘25 =
' ' el
I =
Q = [= 5~ kl
= robang3
s metrobangl s metrobang2 SimeR0I0n0g
[, metrobangl [metrobang2 [metrobang3

r stokastic.ratio
-

r stokastic.ratio [stokastic.ratio
% -

o

B m gy T
e = - B & 4 < = max 8
[fandom| e— @ randc:_ . random) qz_/ _»
] — max B T s T =
=13 L — : []]E:
Y W11 ol G g
: P
s metrobanglxStok. s metrobang2xStok s metrobang3xStok

nsREEHINER
I

startstop

stokastic.patterns IEIID
>0

stokastic.ratio // to + random

B

dac~

r metrobang2xStok

320, 155 200 ,,E. —_— 89
£ =)

. metrobang3xStok

= .
Tine~ L I
= S T Fiiamll —n| 1. 03 0
] e — sel 1 [] C— el 1
Line~ T~ >

T~ Kl

outlet~

8.5 Polyrhythms : Euclidian Sequencers

A very interesting method for build polyryhtms is using Euclidian Sequencers.
As a reminder, Euclidean rhythms have their roots in Greek mathematician Euclid’s algorithm and involve
using the greatest common divisor of two numbers to place hits in a sequence as evenly as possible across a

set timing division.

This technique allows us to build patterned and organic sequences due to the fact to being manage different
ranges of sequences ‘geometrically’. Therefore unusual beat combinations like 5/4 7/8 8/9 can be easyly
combined as well with the most common static patterns 4/4 2/4 etc, in order to build unconventional but

interesting beats.

Euclidian Sequencers

LEa
=
8[}._
é H

TgH+P

fm&———QT

— i _ ——————___hit on that beat
—hit on that beat ||:[]||]||[[i[]]]]||

1o [1 6 6 6 N
desired number of hits

hit on_that beat

5 15[5 6 1 6

desired number of hits desired number of hits
I 2 T T T [LIIIIIIIEI
| s

N T o
D1
(rhythm offset

1 |
7

rhythm offset
E]ﬁilll[[lllllll[l
/ >2 |

,'I rhythm offset |
f | T 1 T 1 T |
| IIIIIIIIIIII@III [: b1) | . y

| | f /
/

lenght of bar

[/ lenght of bar

[7 i
B _El_lll [[|1|5 JE]

|
5 lenghtbar

5

euclid.sequencer

Generates 'euclidean rhythms' (see
cgm.cs.mcgill.ca/~godfried/publications/banff.pdf). Ideally
to be used with a [metro]-powered [f]x[+ 1] counter

™ attached to the first inlet. Hits per bar, offset and bar

~length can be set by the first three arguments respectively.

e Voluse 8-1

=
kikk- -

.33

dac~

| /
|
=~

e

5

& L
euclid.sequencer Lenghtbar

— g
A

Volume 8-1 /

fu kikk-_- fﬂ kikk-_-

*~ 9.33

lenght of bar |
| / [OOOCEEEOE
JeSSNEsEsn mEEsEN | A= Lm

& L &
g euclid. sequencer

lenghtbar

HIDs
10.Human Interface Devices

Useful functions and methods for Sonic Interaction

10.1 keyboard control

In pd we can easily manage laptop’s keyboard as a triggers or switches.
We can use the object [key] which corresponds to a numeric value codified in Ascii. Every key has a certain
number or alphanumeric description. In the first case we are using [key asciinumber].

=key any k has associated an ascii value key 113| q key

sel 113

In the second we are using [keyname] attached to a symbol.
Adding a [sel] with the incoming specific number or symbol we want to control we can easily have a trigger.

Also with spigot we can
transform the simple
trigger into a switch. See
on the right >>

This is usefull to swith
on/off certain algorythms
we want to launch in
time, like the most on the
right section in this
image >>>>

Zeyname

BackSpace

sel BackSpacE

the detection method also can be solved with symbols and
alfanumeric messages

= with spigot we can make easily a Switch [Toggle] that we can
keyname integrate in our instruments

BackSpace

sel BackSpacE
= =
-

spigot

5 startstop.instrument

r startstop.instrument

metro 5
random E
T
|

s =

+ 32

mtof

O5C~

% 8.5

Fe

=N

dac~

Another feature using keyboard is [keyup]. Thats not so efficient for triggers, but maybe for some special
functions we need to control as soon as certain key is released can be ok.

Midi
11 Midi controllers

MIDI protocol is obviously integered in Pd.

Usually is used for Midi in messages from a midi controller, but also can be used in both directions sending
also midi messages to another devices.

For input methods we have [ctlin] which extracts three outlets : the current midi value, the controller ID of a
certain key knob or slider, and the channel (default 1).

controller #
ctlin {all controllers, omni)
T%
| & @ channel _ _ value
8 8
iy | 8 I]
m1c|11nl=I =El controller # . g channel
I midiout =
B B | value |
|
= = L
ctlout 8 1

Also this method can be written with the syntax [ctlin ID 1] that directly extracts the current midi value in its
outlet (check next example).

For output methods we have [ctlout] which in an opposite way as ctlin integers three inlets : the current midi
value, the controller ID of a certain key knob or slider, and the channel (default 1).

Note that to manage different midi IO devices those have to be set up in the preferences ment (ment Edit /
Preferences).

As an example in this tutorial we have the midi mapping for a korg nanokontrol 2 device.
In case you have onther controller is very useful to make a mapping patch of it, in order to use with several
instruments we want to develop.

ctlin 5861 ctlin 58 1 cample

ij racke BD rack>

KDRG nanokontrol? receives

ctlin 28 1

£Hun 16 1poten §tlin 17 1paten £elin 18 poren gtlin 19 1004an oten £tun 21 1pgten £1Un 2 1yoten €tUn 23 1ngten

ctlin 46 1 ctlin 681 ctlin 611 ctlin 62 1 £tlin 32 1) (ctiin 0 2 Ltlin 331 etlin 11 £tlin 34 1) ctlin 2 1 ctlin 35 1 letlin 3 1 uCtlin 36 1 jctlin 4 1 SN 37 1) ctlin 5 1 Stlin 38 1 ctlin 6 1 ctlin 39 1 [ctlin 7 1
$ B g] 2 8 l g g 5 g 3 2 g g 5 g i g]
Dycle et [Carker- [Tprker] | T . | ;
- | | = | |

gHuin 48 1) Lfader £tlin 49 1 pfader tlin 56 1) 3fader ctlin 51 1 §fader gtlin 52 1 Sfader gtlin 83 1 Gfader etlin 54 1 Tfader cetin 55 1 §fader

8 § i i B g g 8

Ltlin 64 1 £t 65 1 ctlin 66 1 ctlin 67 1 Stlin 68 1 £tlin 69 1 gtun 78 1 etlin 71 1
&tlin 43 1 ctlin 431 .__r..ﬂ in 42 1) |ctlin 411 ';r'." in 45 1 ’., 'e 'n L'ef , :’-’i a 'é'
i 5 [8 Il] D F D D =
[jewind Domard Etop Elay Dec

r1
L

'.I.foten Zfoten 3foten 4ften 5ften Efnten ?foten STten
Dra.:kc Dracb

1fader 2fader 3fader 4fader Sfader Gfader 7fader gfader

Dyc le Get Earke r- Da rker+

Dwind Domrd Gtop Gm« Dec

