
1. Pd.Tutorial Essentials
Tutorial by Xavi Manzanares

http://xavimanzanares.oneshaptiques.space
by-sa // 2021

http://xavimanzanares.oneshaptiques.space/

1. Pd.Tutorial Essentials

LICH requirements >
Pd Vanilla, in other words the original kernel of Pd without external libraries developed by the community
Downloads > https://puredata.info/downloads/pure-data

Note : In order to follow the next instructions, download this tutorial in .pd format
This pdf will be anyways useful to read whenever you don’t have your computer to practice.

0. Before Programming

Before programming is useful to know some basic issues in Pd environment.
As you may know, Pd is an open sourced graphic programming language which controls the DSP in a
dataflow of structures that you can build.

How this dataflow works?
Generally speaking, data flow works from top to bottom, and from Right to Left in the GUI.
So Programming elements may have inlets at the top of them and outlets at the bottom.

https://puredata.info/downloads/pure-data

Like other languages we can build structures with different methods and solutions.
In this example, there are different ways to activate the function metronome (object [metro]) :
Through messages [1 [and [0 [
Through a Toggle that in fact is an On / Off switch
Through a bang or a trigger

On the other side, on the right inlet we are introducing a new value for a particular argument.
This can be a fixed value with message, or a dynamic value with HSlider or number
Remember that even could be a default written value in the object (like 1000 in this example), the last value
we are dynamically modificating in live (for example thorugh the associated Hslider or number), will be
defined as the lead and ‘definitive’ one.

There is another issue important to take it into account before programming :
In Pd we have data connections and signal connections.

Data connections sends numbers and alfanumeric messages, at the speed of your CPU can manage and
delay (latency) that has to be defined in your Pd preferences (depending on the OS can be found in the menu
Edit > preferences or in the menu Media > AudioSettings).

Signal connections sends / receive signals at 44100hz (so 44100 dots/samples every second) or whatever
samplerate you already set up in the preferences of Pd.

Data connections are thin ‘cables’
Signal connections are wide ‘cables’
Any object or message for Data connections is written without tilde ~
Any object or message for Signal connections is written with tilde ~

For example a multiplier of data is [* 2] and a multiplier of signal is [*~ 2]

In preferences you can manage different audio devices like internal /external soundcards or even working
with several soundcards.
These GUI interfaces can change depending on the OS you’re using.

In preferences also you can change samplerate or latency (Delay).
Latency (Delay) can produce errors for short values, depending on the size / calculus of your algorythms
and the power of your computer processor. So it’s a value that we can tweak in order to work DSP fine and
without glitches. But how we know it?
The first and basic test to check if pd is working fine is Test audio and Midi in the menu Media :

 We can select Test Tones button on
the left side, and select 80db.
If pd is working fine a sine tone of
440hz will be output in your
soundsystem or headphones.

When we create a new file with Ctrl+n it appears a blank GUI surface where you can build your
applications. This suface is called Patch like when we create a set of concrete connections in the Modular
Synths Cosmos.

Finally, remember that Pd is a dataflow Programming environment where we can build DSP applications, but
also manage and play with them as a performance/musician mode.
Maybe this is the command you’ll be using the most if you program with Pd > Ctrl+E
Ctrl+E will switch between these two modes :
> Edit / Programming Mode
You can move and writte whatever you want in the patch
> Performance / Musician Mode
You can just only move the sliders and dynamic elements of the Code as a performer

 syntax
1.1. Pd syntax

Even we can find several menus in the Pd shell or in any New patch from scratch (File / Edit / Put /
Windows / Media / Help), there is one menu that is related to the programming language elements, and
therefore the most important one, which is the menu Put .
In Put we’ll find different elements of programming :

 syntax
1.2. Pd Programming Dataflow

 Basic algorythms
2.1. Pd Basic Algoryhtms

In the next examples we’ll see a bunch of tiny algorythms and sections of code which can be useful for many
developments.

loops
Like other programming languages, one of the operations we are using to build structures in time are loops.
Even other programming languages this feature is essential for reading the whole code, in Pd we can make
several groups of loops that are running apart from each other. Therefore we can build several groups of
loops to make different operations at the same time.
Here there is an example of how to build a loop of 8 steps (from 0 to 7). In this case the steps are changing to
a fixed speed of 100ms, driven by the object metro.

Counters
A counter builds a sequence of numbers until to a certain value.
If we want to make a count·up sequence we can use this piece of code:

On the contrary, if we want to make a count·down sequence we can use this piece of code:

Conditionals
Conditionals are the classic if, else etc. functions from another languages.
In Pd we can solve conditional dataflow with the object [sel] or [select] which solves both the if condition
and else condition.
The object [sel] works with a string of numbers or alfanumeric values, where each value has an specific
outlet, ordered from left to right.
Notice that in this example we have 2 arguments (40 and 10), but anyways we have 3 outlets in the object .
That’s exactly the reason that the first outlets corresponds to an if function, and the right side outlet works
like an else function.

There are other functions [objects] to manage conditional structures, for example :
[route] > distributor > similar to [sel] but a bit more complex and not so straight forward
[spigot] > gate / door > allow continuity or not from the incoming dataflow
[moses] > splitter > splits numeric values into two data lines from an specific argument ex. [moses 34]

Random
Maybe one of the most exciting feature in Computer Science is the random function.
Of course is a very useful tool if you want to make generative instruments, but remember that even we
adore randomness, if we overuse this function, this could not solve our expectations in the sonic design.

One suggestion is to use random methods in a very defined set of options.

For example we can build a fixed 16 step sequencer in which the main kick can trig randomly a set of 4
random options for every loop :
1) It trigs normally
2) It Re-trigs dubbed
3) It trigs slightly in time with a groovy/slide effect
4) It does not trig
In other words, for this example using randomness in order to get more or less static/patterned structures and
organicity/changes at the same time.

Real Time Clock
Maybe we need to use a real time clock (seconds, minutes etc) for generative instruments we want to make
changes in time, for example an Installation in which we want to take it into account what time is it, or
changing parameters depending if we are on the morning, afternoon etc.
With a set of conditionals [sel] we already seen we can trigger some events for specific daytime.

Line : Ramps and
Line is the object which makes transitions from two points.
It is useful to make several actions in the on going sound like fade ins/outs, portamentos, smooth binaural
effects, among another sliding effects.

In this example a group of lines are making different transitions recoursevely from an initial changing
parameter (random of 128 values every 1000ms). The ‘monitoring’ lilac·blue sliders are conceptually doing
the same but with different sliding effect in time. Therefore the slider at the bottom behaves much more
‘organic’ or physical-modelled. Those sliding values we can apply to other programming parameters, like
amplitudes, amounts of filters, etc.

 Basic algorythms
2.2. Pd Packaging Algoryhtms

One thing that usually happens is that we are programming with a lot of pieces of code that easyly fills up the
GUI. One useful method to save space and code elements we are not playing as performers, is to hide pieces
of code in structures that only sends/receives the dynamic parameters we want to change.
For do that, we have several options:

Sub Patch
In this example we can see two pieces of code that are exactly the same.
Is it easy to see that the right solution saves a little bit of GUI space.

In this case we are using the subpatching method, with and object writting into : ‘pd’ and the name you like,
in the example [pd loop]. This creates a blank sub-patch, where we can paste the desired code and
connected to the main GUI through inlets and outlets.
The order of inlets and outlets that appears in [pd loop] at the main GUI, corresponds to the different inlets
and outlets we have written from left to right inside the subpatch.

Graph
Another method to pack sections of code is with ‘Graph’ function > menu put > graph
As the previous method, it creates a new patch where we can ‘make like a kind of hole’ in it, allowing us to
see the elements we want to manage.

Similarly as the previous technique, the order of inlets and outlets appearing in the main GUI’s Graph
corresponds to the different inlets and outlets we have done from left to right inside the Graph

Both methods (Subpatch & Graph) are similar, but maybe the second one helps to visually structure a main
GUI for big Patches.
Anyways the SubPatch technique allows us to make complexe groups of sections of code, that we can keep in
the ‘backend’ calling the functions or parameters we want to control, via sends and receives.
Sends [s whateverdata] [s~ whateversignal] and Receives [r whateverdata] [r~ whateversignal] are
somekind of ‘wireless’ connections, does not matter how deep you are (imagine you wanna send a message
from the main GUI, to a subpatch which is into another subpatch into other subpatch of the main GUI etc.)

 Basic algorythms
2.3. Pd Arrays (Buffers or Memories)

Arrays [menú put > arrays] are useful elements in Pd.
In fact are memory storages or buffers, where we can keep both data (numbers) and signal.
Let’s start with data storages and its transformations.

Array’s transformations are usually done by specific messages, with the next conceptual syntax :

[; arrayname transformation value [

Arrays > Constant
We can use arrays to store constant values in time.
Even is not so often used, this is the syntax :
[; arrayname const value [

Notice that value after const is written with a $1.
This means that can be a variable, therefore a numeric value which dinamically can be changed.

Arrays > Resize
We can resize arrays in time.
This is the syntax :
[; arrayname resize value [

Arrays > Trigonometry functions

We can make data buffers with trigonometric structures, like sines and cosines
These are examples of the syntax :
[; arrayname sinesum arraysize string.of.values [
[; arrayname cosinesum arraysize string.of.values [

The array size has to be power of 2 > 32, 64, 128, 256, etc
The string of values you can try with different combinations between 0 and 1 > 0, 0.1, 0.3 ,0.2, 0.1, 0.4, etc..
The more large is the string, the more curvatures has the generated wave.

For instance if we want to make a basic sinewave
[; array3 sinesum 64 1 [

Now a sinewave a bit more ‘woobly’ :
Remind that the more large is the string of values, the more curvatures has the generated wave.

With cosines is similar
[; arrayname cosinesum arraysize string.of.values [

Arrays > Normalize
Depending on which use we want for the buffer, maybe we need to limit the ranges.
Working with sines and cosines the values on the Y axis goes from -1 til 1, but sometimes shapes can
overpass these thresholds.
There is another instruction with arrays that limits this ranges, which is ‘normalize’
[; arrayname normalize value [

If we write normalize 1, shape will be fitted in -1 / 1 ranges.

Trigonometric shapes are very useful if we want to make WaveShaper Filters, for example this one.

Anyways, due to the fact that it’s a nice and expressive technique of signal filtering, we’ll see different
methods and tricks of it later.

Arrays > .txt
Reading and Writing TXT files

A very interesting feature with Arrays is to ‘import’ or grab the contents of a text file.
In fact this is an interesting feature for sonification projects.
In this sense, in order to Data be imported correctly by Arrays, text files has to be formated with a value per
line of code.
Values has to be ALWAYS numbers, not alphanumeric structures or others, just one number for each line.
For example, this .txt file with different values between 1 and 4.
note : the image features a dual zoom of the same file.

If we save this .txt file in the same directory level as the patch we are working in,
with this message,
[; arrayname read ourfilein.txt [
and bang it on it or just clicking on it :
The contents of the file will be directly transported to the array :

In the previous image, noticed that values of the array has overloaded the frame of the array. That’s because,
by default Arrays generates a score with values from -1 til 1.
Due to the fact we have values in the .txt (and therefore in the array) from 1 to 4 it features an overloaded
representation.
How can we rearrange it?
If we make right button over the array and click properties, we’ll see a pop up menú where we can change
different parameters : size of the Array in samples, Size of the Array in pixels (X & Y), range of values in Y
axis, size of the Array itself amontg other features of visualization.

Once set up values from 0 to 4, Array is rendered like this :

Also another trick and very interesting Array’s feature is to save the content.
Imagine in an array we have a sequenced bassline midi notes. Every time we open the patch, the contents
will be erased and we have to bang it to a certain message to loading it again, unless we have already set up
‘save contents’ in Array Properies .
If we do that, every time we open the patch the content of this Array or memory will be kept like a list of
values embed in the array and therefore in the patch (file.pd) we are working in.
This method works both for data storages and signal storages within the arrays.

>>>>>>>>>>>>>>>

Playing around with arrays and .txt files allows us to build sequencers in a pretty easy way, for example :

Anyways we’ll see later in the sequencers chapter of this tutorial.

 Sampling
3. Pd Sampling

After we have seen different array methods, let’s remind that Arrays we can use it for storing numbers, but
also for storing signal. (In fact the second one is also a data storaging but it has some specific details to take
it into account, to manage it as a signal).

If you are a musician, you’ll already know what sampling is, but as a short reminder, is a technique which
uses audio fragments to play and process them.
Notice that in Pd and in DSP techs in general, sample is not only the concept of storaging audio signal in
buffers, but also the ‘pixels’ of information which describes a particular storaged signal. Therefore for an
specific unit of time, the more samples of information we have, the more detailed will be the signal. That’s
interesting for reproduce preexisting audio files, but for managing signal calculations in real time,
sometimes the HD quality render effort is collapsing with the processor speed, and therefore its more
efficient to balance and tweak it, in order to get a nicer DSP performance.

Let’s see different methods to play an audio file from the computer.

[readsf~]
The first and most simple method is to read the audio file (or in .wav or in .aiff) directly from the disk
(therefore without buffer it). This method is required for large* audio files we want to play.

*large meaning audio from 30 seconds until hours.

[readsf~] as a memotechnique : readsoundfile
is an object where we can describe the number of channels we want to play :
for a mono audio file [readsf~]
for an stereo file [readsf~ 2]
...and so forth until 64 audio separated channels.
But also we can add another argument in the object to define some more specific details like buffer size in
bytes per channel for specific purposes [not often used].

Therefore the syntax :
[readsf~ numchannels buffer.size.per.channel.in.bytes]

In the object [readsf~] will be several outlets. The firsts from the left corresponds to the channels that has
been described in the object. There is also another outlet on the right bottom which trigs a bang as soon file
has ended the whole reproduction. Therefore if audio sample is correctly edited we can make easyly a looper.

In the previous example due to the fact we have been using a symbol (menú put > symbol), the first time we loaded the
file from the HardDrive the path has been storaged in the symbol. So anytime we want to make a loop the sequence of
triggers first trigs the path and after 5 ms [pipe 5]* trigs the [1] message which starts the play.
The object spigot is in charge if we want to make this flux like a loop. So spigot is in fact like a gate that is opening / not
opening >> flux continuity / not flux continuity

*pipe is a delay of data very useful to scheduling instructions and dataflow.

Recording : [writesf~]
The opposite function of [readsf~] is [writesf~] that is an object which can capture or record any signal that
is throwing into it.

[osc~ 111]
 |
[writesf~]

That’s an interesting feature if you want to record a performance of your patch within the DSP.

Remind that in order to record some running audio is important to follow an specific order :

1.write the name of the file we want to create in a message associated to writesf~
[open /your/path/Desktop/record.wav [

2. connect whatever signal you want to record into the writesf’s channels you wanna record (L+R if is
[writesf~ 2]).

3.If you are ready to record, then Click on the message created before [open /your/path/Desktop/record.wav
[

4.click on [start [message, to init the recording

5.click on [stop [message, to stop the recording

note : clicking on the message with your path and name.wav it creates a log file that iniciates the recording
with the instruction [start [. Therefore if we do not click on the message, log will not be created and Neither
the audio record.

[tabplay~]
maybe the most precise method to sampling in the classic sense is with the object [tabplay~]
First we have to load a .wav or .aiff file into an array or memory that after we can trig, and even loop it.
Notice that in order to adapt an audio file into an array it is necessary the object [soundfiler] and it previous
message [read -resize $1 arrayname [

With [tabplay~] we can play the whole sample like in the previous example, but also we can make another
use of it that is slicing.
Slicing is a reproduction of a particular section of the original file that we can manage with messages that
defines the init point of the sample and the lenght in samples of the slice > [0 4410 [[100 4410 [etc.
In the next figure a tiny sequencer of 8 steps triggers several slices.

 Synths
4.1. Pd Synths Waveforms

If you are an electronic musician you can jump this introduction :
Synthesizers both in software and hardware are beatiful instruments to reproduce a massive range and types
of sounds, from the imitation of natural sounds until the production of unique and particular sounds.

All this massive range of sounds, can be produced by a vast number of techniques and methods, but anyhow
we can build any type of synthesizer from particular ‘sonic bricks’, that afterwards we can combine, organize
and filter in complex structures.
These bricks are refered as Waveforms driven by Oscillators.
An Oscillator is one of the most basical conceptual element in a synthesizer :
In hardware framework, it translates electricity to an oscillating acoustical signal.
In software framework, are functions which translates data into an oscillating acoustical signal through the
DSP.

In pd there are some native waveforms and some others that we can build.

Sinewave Oscillator > [osc~]

Saw Oscillator > [phasor~]

(half) saw >
(full) saw >

Square Waveform

Triangular Waveform

Noise Waveform

Even is not exactly a waveform type, white noise [noise~] it is a very common ‘brick’ in Synth’s World.
White noise is a pretty particular sonic element in which all frequencies are reproducing at the same time.
For this reason is a very used element in substractive and percussive synth techniques.

 Synths
4.2. Pd Phases in Oscillators and Phasors

Phases can be set both in [osc~] and [phasor~] objects through the right inlet.
Notice that degrees are represented in a range from 0 to 1

As you may know there are a big amount of synthesis types.
However we differenciate among different classical categories like additive, substractive or granular.
Another categories and techniques of synthesis can be based in physical models, in probabilistic models
(stokastic synthesis), or imitation of sounds like formant synths imitating human voice, among others.

 Synths
4.3. Pd Additive Synthesis

Visual Domain Analogy > Drawing different colors and shapes in a blank and white canvas.
The additive synth would be the whole picture.

Additive Synthesis : several layers of generated sound combining and interacting between them.
In the next example, a group of 8 oscillators with superior harmonics (multipliers) is changing randomly the
amplitud of each line before mixing them. The result is a continuous tone / drone in which timber is
changing all the time.

 Synths
4.4. Pd Substractive Synthesis

Visual Domain Analogy > carving with different shapes and sizes the surface of a black canvas, sculpting it
and arriving to the canvas basement. The Substractive synth would be the whole sculpted picture.

Substractive Synthesis : sculpting with different kind of filters a massive block of sound generated usually
with white noise [noise~].

In the next example an oscillator is modulating a white noise which afterwards can be filtered with hipass
filters or lowpass filters.
[lop~ value.in.hertz]
[hip~ value.in.hertz]

As a reminder for newbies:
A hi-pass, features the whole auditive spectrum starting from the hipass parameter or threshold.
A lo-pass, features the whole auditive spectrum until the lopass parameter or threshold.

In the next example a white noise is filtered with a band pass filter.
[bp~ value.in.hertz]

As a reminder for newbies:
A band-pass, executes a ‘mountain-shape’ filter from an incoming signal in which for a certain frequency
defined in the bp.
The ‘mountain shape’ can be more or less vertically stretched depending on the amount of Q parameter,
producing more or less ressonant effect, according the reflections inside the cavity of the ‘mountain-shape’
Therefore:
High values of Q represents a kind of huge and vertically stretched mountain, and will be MORE ressonance
on the frequency range defined by bp~.
Low values of Q represents a tiny hill wider in the bottom, and will be LESS ressonance on the frequency
range defined by bp~.

///////////////////////

The previous examples may be a bit obvious and ‘nothing’ special as a synths, but may be can constitute the
basis for other operations and tricks in time.

For example, with the band pass example, we can introduce a couple of tiny algorythms to create some
particular effects.
In the first one (top left), some kind of sliding or portamento effect is produced in the band pass frequency.
Every second is doing this effect with a random frequency in a different amount of time, therefore a slightly
different action within a repetition process.

In the second one (bottom left), a random generator produces different sudden frequency values.
This sudden changes produces some glitches with a particular sound-ressonant bubbles effect.

Notice that those algorythms are a calculus layer over the signal structure. Therefore it is possible to combine
and reproduce several algorythms at once, producing expressive and unexpected effects.

 Synths
4.4. Pd Granular Synthesis

Another interesting technique, originally conceived from digital music systems, is granular synthesis.
Granular synths are somekind inspired by quantum physics applied to sound.
In this technique a particular audio sample is reprocessed like if we would have a microscope targeting over
a tiny sample slice, with different non-linear parameters to tweak like amount of particles or grains,
asyncrony of them, among other non conventional parameters.

In pd Vanilla , that is the version in which we will be able to compile for LICH module, granular synths are
not the most complexes, but at least we can use it to stretch and distort samples as an expressive sonic
resource.

Notice that these techniques requires an advanced level of DSP Programming skills, that often as a
musicians, or coder-musicians we use them just with few tweaks.

Another example of granular synth is the next one, borrowed from OWL rebel Tech repos :

If you like this kind of synthesis and want to master it, the book ‘MicroSound' C.Roads is a very nice
reccomendation.

https://mitpress.mit.edu/books/microsound

With synthesizers we can produce synthetic sounds with the most fundamental bricks like we already saw, but
also is a lot of fun to model, transform and sculpt any preproduced synthetic sound. Thats the process of
signal filtering.

 Filtering Signal
5.1 Eqs :// hip~ lop~ bp~

Like we already saw, we can filter any signal through the classic filters lopass [lop~ freq] hipass [hip~ freq]
and bandpass [bp~ freq Q] .

If we want to build an Equalizer we can split the main signal into the EQ channels we want, and drive each
line with the appropiate [hip~] and [lop~] thresholds.
In addition in the end of each line, there is an attenuator [*~ 0.74] due to the fact that signal line is
triplicated.

Filtering Signal
5.2 Delays

Maybe Delays is one of the most classic effects (but at the same time essential) in signal processing, due to
the fact that is not affecting directly the character of the sound, but is affecting it in the time domain.

In order to build delays we need to send any particular signal into a buffer with
[delwrite~ name.of.delay default.time]
and later call it with [vd~ name.of.delay] to the main signal mix. The values inside this object has to be
managed with [sig~] which allows to introduce numbers (data) into a signal object. Therefore is a method to
dinamically introduce delay times into the [vd~] object.

In addition we can reinject the processed signal’s delay into the original loop through a gate [*~] allowing to
reinject signal from 0 to 1 (zero reinjection to full reinjection feedback).
Note: if you use delay’s feedback in LICH applications, feedback values has to be until +- 0.75 because
firmware doen not support calculations fro higher feedback values.

Another interesting feature with Delays with Digital Processing techniques, is to quantize the delay times
related to a certain master clock we are running.

 Quantized Delays

In this case the algorythm to quantize time, is as simple of use [t b f] trigger bang float which from a certain
incoming value (in this case [r timequantized]), can be easyly sliced or quantized in proportions of time of
the main clock with the initial sent [s timequantized].
Therefore Quantizations can be controled just by the lilac Hradio Button.
In this case there is a couple of Hradios : on the left for quantized macro delays and on the right for
quantized micro delays.

 Filtering Signal
5.3 Reverb

Like Delays, Reverb effect is an action that affects the incoming signal in the time domain, but specially
in the space domain.
With this classic effect we can simulate different spaces from a tiny room, until a massive hall.
In Pd reverbs are pretty simplified objects, due to the expensive processor calculus of this kind of filters.
[rev2~] less Cpu expensive
[rev3~] more Cpu expensive

 Filtering Signal
5.4 Distorsion

There are several kind of distorsion, but one of the most common is the BitCrusher, a type of distorsion that
reduces the bitdepth of the running signal, altering the waveform itself.
The next example is an algorythm of bitdepthing.
For low values of the top lilac slider, incoming signal is not filtered
For high values of the top lilac slider, incoming signal is transformed into a much more ‘pixelated’ / squared
waveform than the initial one.

 Filtering Signal
5.5 WaveShapers

WaveShaping is an sculpted/extruded technique of an incoming signal.
According to a certain stored waveform’s geometry, signal is processed with this shape.

In pd we can use different methods to build this filter.

 tabosc4~

With this object associated to an array or memory (in this case taula), an incoming value is processed as the
lead frequency of an oscillator which shape or waveform is the one described in the array (taula).
In DSP terminology, [tabosc4~] is a traditional computer music style wavetable lookup oscillator using 4-
point polynomial interpolation.

It’s a nice technique to manage waveshaping with oscillators in a simple way.

 tabread4~

In DSP terminology, [tabread4~] is used to build samplers
and other table lookup algorithms. The interpolation scheme
is 4-point polynomial.

With this method [tabread4~ array] we can modelate in an
easy way different shapes in the array, with trigonometric
messages like sinesum, cosinesum among others.

With this method, window size (X) in samples has to be
powered 2 (32,64,128,etc), that we can call with the
appropiate messages.
[; array sinesum X string.of.values.that.describes.shape [
and in the muliplier of the signal featured in the examples
[*~(X)/2]

Notice that the more window size (X) will have the waveshaper, the more accurate or less glitched will be
the resulting signal.
For example :

Following in this line of comments, lets see how behaves the array [in this case waveshape] depending on the
written data on it.
If we have a simple ramp, incoming signal is not processed, so the result its gonna be like if there is no
waveshaping filter at all. See this figure :

Otherwise If we have different shapes from the lineal ramp shown before, incoming signal is processed
through the geometry of the draw shape, like if the previous ramp was the axis of the calculus.
In this example, a simple sinewave is producing a wooble wave like in visualization’s array waveshapevis is
featuring :

With this method we can easyly build different shapes, for example building with trigonometric messages :
for example :
[; waveshape2 sinesum 1024 1 0.2 0.3 0.1[
With sinesums we can produce similar effects to a compressor due to the fact that boosts incoming signal
without clipping (in case that the stored shape is fit in the limits of the array (-1 to 1).

[; waveshape2 cosinesum 1024 0 0.2 0.2 0.3 0.1 0.6 0.3 0.2 0.3 0.1 0.2 0.3 0.1 [

Another interesting feature with this method is to draw over the array with the mouse so we can modificate
shapes with strange and non regular geometries :

 tabread~

In DSP terminology this object read numbers from a table and output as signal.
Like in the previous its useful for drawing distorted shapes. Notice that the multiplier and the array size is
100 by default. You can change this in order to produce some more distorted effects.

Waveshaping RECAP :

May be you may think, that due to have several waveshape options and methods, which is better to use?

If you want to make noise registers may be tabosc~ and tabread~ are useful.

But if you wanna process your signal with more accuracy tabread4~ is a very cool method because allows
filtering signal both in a clean way and in a distorted / glitchy way depending on your performance needs.

 adc~
6. playing with incoming signal

[adc~] analog to digital conversion is the object that introduces any available* line-in or mic, already set up
in your sound card parameters. In laptops usually is the incoming signal of the in-built microphone, unless
you load an external sound card with its incoming ports. In this case if you have an external soundcard with
for example 4 mono inputs, those will be refered as [adc~ 1][adc~ 2][adc~ 3][adc~ 4].

In LICH module we have a couple of incoming audio signal ports (IN _L) and (IN _R) that corresponds to
[adc~ 1] and [adc~ 2].

This piece of code features the incoming signal’s render from the laptop’s in-built mic.

With the object [env~] we can monitor the envelope of a certain signal in this case the incoming signal of the
mic. The rate of analysed data will be very fast, but we can threshold it with different values in order to make
some conditional tree of triggers according to the incoming signal’s strenght.

With the object [snaphot~] we also can monitor the envelope at a certain desired rate [with an incoming
[metro ms] object, that maybe can match with our clock for other elements in the patch, that will bring us
more sync effect.

In this example, for higher values than 85 [> 85] detected in the [env~] analysis, it will trigg a bang that in
this case is connected to an oscillator with attack and decay control, therefore a percussive sound.

One way to translate signal to data is with the object [snapshot~] triggered with a [metro] object at the
desired ratio.
On the contrary, one way to translate data to signal is with the object [sig~].

We can use envelopes to control generatively/automatedly different parameters. For example in this case the
analyzed envelope data result is controlling the amplitude of a couple of oscillators.

Or even the envelope can control the frequency and the amplitude of an oscillator, like in this example :

6.2. analyzing incoming signal

There are different objects useful for analyze a certain signal.
Anyways there a couple of methods that does not work in the rebeltech compiling process which are
[fiddle~] and [bonk~]...but at least we can measure the incoming signal wtth [env~] as we already saw.

Remember to use
this method >>>>>

within your LICH Pd algorythms

 Envelopes & LFOs
7.1 LFO : Envelope Modulation by Oscillators

As you may know LFO is a very common and classic effect in electronic music.
It consists into the modulation between a couple of oscillators, one the lead frequency, and the other the LFO
modulation rate with very low values of frequencies.
In pd the most basic method to build an LFO is multiplying the signal of two oscillators with very different
frequency rates (the lead one and the modulator one).

Also we can easyly
build some more

unconventional
and experimental

LFOs like put a
chain of LFOs

therefore an LFO
over a previous

LFO and so forth.

Or also to be more accurate in the LFO frequencies to tweak with proportions of a certain value (in this case
[0.125[).
In this sense, quantizing LFO frequency rates like the previous one we can build some particular sequences

of LFO values

 Envelopes
7.2 Playing with envelopes in percussive synths

Synths are amazing instruments converting electricity into acoustic signal.
In digital world we would say that different kinds of data produces changes in the DSP extracting an acosutic
signal.
In pd there are many kinds of types and techniques, but let’s see how to build percussive synthetic sounds.
To produce them we have to control envelope as the classic AttackDecaySustainRelease structure, but even
we can go in a much more simplified way, just only controlyng decay or attack + decay.

First we need signal generators that in pd -LICH oriented (vanilla), we have a couple of functions to do so,
and already saw them :
[osc~] sine oscillator
[phasor~] half sawtotth waveform oscillator
[noise~] white noise generator.

With those objects we can produce signal that after we can control in its decay with the object [line~] that
produces a ramp or progression between two values. In this case message [1, 0 $1[means that any time the
trigger is activated, the envelope of the sound will go instantly to the maximum (1), and then goes to (0)
(silence) in $1 miliseconds. As $1 is a variable, means that any value we are dinamically changing it will be
cosidered as $1 (in this case with the blue slider).

Also we can complex a bit the algorythm in the line~ section, introducing both values : one for attack and the
other for decay.

The next figure features
the same algorythm in
different compacted
forms. On the left the
whole algorythm, in the

center a simplified one, and on the right an encapsulated method with graph [menú put > graph] that we saw
in 2.2. Pd Packaging Algoryhtms

Notice that line is not only applyed to envelope to control decay time, but also to slide in time the incoming
frequency of the oscillator producing a portamento effect. In this case with the message [$1, 55 200[linked
to line~ in the left version, or [320, 55 200[in the center version.
In this last case, message [320, 55 200[indicates the start frequency (320hz), the target frequency (55hz) and
the sliding time between both frequencies (200ms).

In this next figure >>>>>
is shown a compacted version of a percussive sytnh where we can

control initial freq, target or final frequency, sliding time (slope),
and decay time. Therefore a pretty compat and versatile module to

trigg percussive sounds.

 Sequencers
8.Time Machines

A Sequencer is one of the most essential tools in the electronic music production.
As you may know a sequencer is somekind of a time machine or time engine, because it builds narrative
structures in time.

[O][][][O][][][][O]
[][O][][O][][O][][O]
[][][][][O][][][]

In the programming domain, this kind of structures can be pretty different, depending on the events that we
want to create.

8.1 Linear Sequencers
8.1.1 Fixed

One of the most classic example is a fixed linear sequencer.
In this case building an algorythm with a loop section with [mod] and a conditional section with [sel]

8.1.2 8 steps SEQ

This example is one of the most basic example of a swith sequencer with 8 steps, that que can swith with on /
off any of those 8 steps.
Well need [spigot] object that opens or closes the gate* and also its receive messages for each step.
[s 8xpos1][r 8xpos1] [s 8xpos2][r 8xpos2] [s 8xpos3][r 8xpos3] and so forth
Notice that build this structures is somekind like a knit work, due to repeating a certain unit structure.
So if you want to build a 16 or 32 steps sequencer is simple although a meditative work)
*of the incoming trigger that already has to be sequenced in postition with conditionals [sel 0 1 2 3 4 5 6 7],

8.1.3 8 steps SEQ Phrases

This example creates a different stored pattern combination for every loop.
For do that we have to send and receive a 1 or 0 value in the ID message:
[s 8xpos1][r 8xpos1] [s 8xpos2][r 8xpos2] [s 8xpos3][r 8xpos3] and so forth
(the receive messages are featured in the previous image on the top)

With the combined messages
;
8xpos1 1;
8xpos2 0;
8xpos3 0;
8xpos4 1;
8xpos5 0;
8xpos6 1;
8xpos7 0;
8xpos8 0;

is possible to set a particular combination of the whole 8 steps.
Therefore we can make a tree of patterns that are triggered every time the main loop starts.
In this case we have a tree of 4 different patterns but we can build some more complex structures in time in a
pretty easy way.

8.1.4 8 steps SEQ Fixed + 8 steps SEQ Random

This example combines a 8step fixed sequencer where we can manually select the desired active step
mixed up with a random 8 step sequencer with different proportions of random that can be tweaked or
cancelled for a certain and desired randomization.

8.2 Sequencers in Arrays

Another method to define sequences is with Arrays.
In this case a looper is counting the content of an array with [tabread seq] that in this case trigs the storaged
value as a main frequency of a synth with 3 superior harmonic oscillators.
Notice that the values of the array in this case are refered to a midi values. Therefore with the object [mtof]
miditofrequency we can translate values to properly income in [osc~] objects

8.3 Random Sequencer with Pentatonics

When we are programming we can build nonconventional methods to build sequences.

For example, in this case a defined metronome is triggering a random value between those values that
corresponds to a pentatonic scale combination. In the code the semitones relation [0 [[2 [[5 [[7 [[9 [

Usually playing with random is not a straight forward task for nice sonic designs, but in this case we have the
advantage that between pentatonic tones every tone matches ‘harmonic’ with the others. Therefore any
random combination between those semitones will be ‘audible-comfortable’.

8.4 Stokastic & Probability Sequencers

Another non conventional method, borrowed from Xenakis
researches decades ago in probabilistic sequencers / synths, is
this tiny example of 3 triggers (with 3 embed percussive
sytnhs) that can be both triggered in 3 types of combinations
and amount of stokastic ratio (from less random to more
random probabilities that triggers are activated or not.)

Here the internal code with all probability operations.

8.5 Polyrhythms : Euclidian Sequencers

A very interesting method for build polyryhtms is using Euclidian Sequencers.
As a reminder, Euclidean rhythms have their roots in Greek mathematician Euclid’s algorithm and involve
using the greatest common divisor of two numbers to place hits in a sequence as evenly as possible across a
set timing division.

This technique allows us to build patterned and organic sequences due to the fact to being manage different
ranges of sequences ‘geometrically’. Therefore unusual beat combinations like 5/4 7/8 8/9 can be easyly
combined as well with the most common static patterns 4/4 2/4 etc, in order to build unconventional but
interesting beats.

 HIDs
10.Human Interface Devices

Useful functions and methods for Sonic Interaction

10.1 keyboard control
In pd we can easily manage laptop’s keyboard as a triggers or switches.
We can use the object [key] which corresponds to a numeric value codified in Ascii. Every key has a certain
number or alphanumeric description. In the first case we are using [key asciinumber].

In the second we are using [keyname] attached to a symbol.
Adding a [sel] with the incoming specific number or symbol we want to control we can easily have a trigger.

Also with spigot we can
transform the simple
trigger into a switch. See
on the right >>

This is usefull to swith
on/off certain algorythms
we want to launch in
time, like the most on the
right section in this
image >>>>

Another feature using keyboard is [keyup]. Thats not so efficient for triggers, but maybe for some special
functions we need to control as soon as certain key is released can be ok.

 Midi

11 Midi controllers

MIDI protocol is obviously integered in Pd.
Usually is used for Midi in messages from a midi controller, but also can be used in both directions sending
also midi messages to another devices.

For input methods we have [ctlin] which extracts three outlets : the current midi value, the controller ID of a
certain key knob or slider, and the channel (default 1).

Also this method can be written with the syntax [ctlin ID 1] that directly extracts the current midi value in its
outlet (check next example).

For output methods we have [ctlout] which in an opposite way as ctlin integers three inlets : the current midi
value, the controller ID of a certain key knob or slider, and the channel (default 1).

Note that to manage different midi IO devices those have to be set up in the preferences menú (menú Edit /
Preferences).

As an example in this tutorial we have the midi mapping for a korg nanokontrol 2 device.
In case you have onther controller is very useful to make a mapping patch of it, in order to use with several
instruments we want to develop.

Ex korg nanokontrol2 mapping

